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Abstract

Curiosity towards exploring new objects in one’s environment is a key driver of
intelligent agents. We explore the problem of mapping in environments which are
non-stationary, and where areas may exhibit different change patterns. This is an
important challenge for potential “domestic” robots, which would have to perform
tasks in houses. We propose a computational approach to building a curious agent
which constructs a map of its environment and estimates how often a specific lo-
cation in this map is changing. Using these estimates, the agent will actively try to
reach rapidly changing areas more often than static areas. As a result, the behavior
becomes more focused towards learning about significant changes in the environ-
ment. We present experiments in a robotic navigation framework implemented
using ROS. The results show the utility of this framework for map acquisition and
maintenance.

1 Introduction

Intelligent agents are often faced with the problem of exploring their environment, in order to learn
how to achieve different goals. For example, an autonomous robot living in someone’s home may
have a map of its initial environment, but may need to adapt quickly to changes, such as a new
piece of furniture or toys left on the floor. This type of situation requires the agent to explore
its environment in such a way as to identify quickly any changes, and to adapt its representations
accordingly. Efficient exploration has been a big focus in reinforcement learning, as well as in
robotics (especially in map building). However, many existing algorithms equate “exploration”
with “randomization”. While randomized action selection is crucial in order to gather diverse data,
it does not provide the type of exploration behavior seen in animals and humans, which tend to
explore persistently only the aspects of the environment that have changed significantly (rather than
exploring uniformly everywhere). For example, a child will pick up a toy that she has never seen
before and inspect it for a long time, until she has figured out how to use it. Meanwhile, other
existing toys will be ignored. Simple randomization in the action selection will not lead to this type
of directed exploration, and instead will appear more chaotic. Our goal in this paper is to present
a computational approach for exploration which mimics curiosity, i.e., taking actions in a focused
way to detect novelty in the environment.

We use as a testbed the problem of robot mapping, in which a robot has to discover which parts of its
environment contain obstacles. We provide the robot with two initial exploration strategies: recency-
based and change-based exploration. Recency-based exploration was introduced by Thrun [8] and
drives a robot towards parts of the state space that have not been visited in a very long time, under the
assumptions that they may have changed since then. Change-based exploration explicitly drives a
robot towards parts of the environment in which change is known to happen (even if the robot might
have been there recently). Specifically, we propose an approach that estimates change in different
parts of the environment using Poisson processes. Processes with high rate indicate rapid changes.
We present an adaptive algorithm which learns how to choose the best exploration policy (recency
or change-based), using reinforcement learning. The approach is generic and could be used with a
larger set of exploration strategies as well. We experiment with the proposed approach on a faithful
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odometry data as an odometry message and it also publishes a tf-coordinate transform1. The
observations for the surrounding cells are encoded as a laser range scan. Actions are send in
as an integer message.

2. Stage: In this simulation Stage was set up to simulate a di↵-drive robot with a zero noise
odometry sensor and a laser range scan sensor. The simulated robot is controlled by sending
a linear and angular velocity. The sensor data is published as a laser scan message, odometry
message, and as tf-coordinate transforms.

2D World Simulator
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Figure 1: Architecture

The learning agent is split into three modules:

Grid Mapper: The grid mapper takes in sensor data from the simulator and maps an occupancy
grid map. If the Stage simulation is used, the mapper first converts the laser range reading into a
point cloud using the laser geometry ROS library. This library also takes tf data into account and in
comparison to ray-tracing the sensor scan, using this library produced a more accurate map. Based
on the changes a sensor data update causes to the obstacle grid map, the Poisson rate maps and
all other maps used by the exploration strategies are updated in this module as well. The obstacle
grid map is send over to the controller module and all other maps are send over to the agent.

Controller: The task of this module is to take a goal position from the agent, and then navigate
the robot to this position and explore locally using a controller.
In the grid world setup, this controller takes in the obstacle data from the mapping module, and
the tf-transform from the simulator. Once a goal position is received, it plans a path to it form the
current robot position (taken from tf-data) using the last obstacle map. The planner is a simple
wave front planner, i.e. a wave front starting from the goal position is created and then a path is
computed using hill climbing from the robot position to the goal position. The controller is tolerant
to goal positions that are blocked or hidden through walls. In this case a path is planned that takes
the robot to the goal as close as possible. Using this path (which is a sequence of positions), an
action sequence is computed using the known transition model of the robot and the actions are
send over to the simulator. Once the goal state is reached, the controller takes over to perform local

1The ROS tf package o↵ers a service to ROS nodes that allows to send a timestamped stream of rigid transfor-
mations through the whole ROS system. ROS nodes listening to this stream use a client API that can interpolate
these transformations over time. All code written for this project uses this service to transmit odometry data.
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Figure 1: Overview of the learning agent

robot simulator, implemented in ROS [4]. The results show that the proposed algorithm identifies
changes in the environment efficiently, and is superior to any of the individual strategies on its own.

2 System overview

Figure 1 presents a general overview of the learning agent, which is split into three modules. The
grid mapper takes in sensor data from the simulator and maps an occupancy grid map. We experi-
mented both with a grid world simulator and a Stage robot simulator. If the Stage simulation is used,
the mapper first converts the laser range reading into a point cloud using the laser geometry ROS
library. Based on the changes that a sensor data update causes to the obstacle grid map, the Poisson
rate maps and all other maps used by the exploration strategies are updated in this module as well.
The obstacle grid map is sent over to the controller module and all other maps are sent over to the
agent. We describe this module in more detail in Sec. 3.

The controller takes a goal position from the agent, navigates the robot to this position and explores
locally around it, using a local controller. In the grid world setup, this controller takes in the obstacle
data from the mapping module, and the ROS tf-transform from the simulator (which lets the user
keep track of multiple coordinate frames over time). Once a goal position is received, the controller
plans a path to it from the current position, using the most recent map. The planner is a simple wave
front planner, i.e. a wave front starting from the goal position is created and then a path is computed
using hill climbing from the current position to the goal. If the goal is blocked or hidden by walls,
the planned path takes the robot as close as possible to the goal. From the path (which is a sequence
of positions), an action sequence is computed using the known transition model of the robot, and
the actions are sent to the simulator. Once the goal state is reached, the local controller takes over
to perform local exploration. For this, the cells that were changed during the last sensor update are
recorded, their centroid is computed and then used as the next goal position. If no map changes
were made, one step is made randomly. The number of steps the controller can make is bounded
by a constant, and the number of consecutive random steps is also bounded. Once the maximum
number of steps is reached, a termination signal is sent to the agent and the controller waits for a
new goal position.

The learning agent’s task is to first decide an exploration strategy. From this, it creates a probability
distribution over the robot’s map and samples the next goal position for the controller. Sec. 4
describes in detail the exploration strategy.

3 Mapping

The mapping module takes in laser range data and tf-coordinate transforms to update its obstacle
grid map. It keeps a list that stores if and how a cell in the obstacle map is changed. This list is used
for learning the rate of change at each cell the obstacle map.

To implement change-based exploration, two Poisson processes at every grid cell in the obstacle
map, to estimate the rate of change. One Poisson process models the change of a cell from blocked to
free, the other models the change from free to blocked. It is necessary to distinguish the change of a
cell into a blocked-to-free and a free-to-blocked event because a cell may only spend a short amount
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of time in a blocked state and a long amount of time in a free state (i.e. if a block moved through the
world, it will appear at one cell only for a short amount of time). This cannot be represented using
only one Poisson process. As shown in Figure (2), these events are strictly alternating.

Figure 2: Two Poisson processes model used to learn the rate of change at each grid cell.

To compute a rate estimate at a grid cell, the amount of time a cell is observed and the number of
observed events is stored. The average time interval between events is computed for each process at
each grid cell c as:

E[T c
block] =

tclast − tcnot obs. − tcinit

ncblock
and E[T c

free] =
tclast − tcnot obs. − tcinit

ncfree
,

where tcinit and tclast are the first and last time cell c was observed, and tcnot obs. is the amount of time
the cell was not observed between the first and last time (i.e. when the robot has explored a different
area). tcnot obs. is important to factor into this computation, otherwise the interval estimates will have
a large bias. ncblock is the number of block events observed, and ncfree is the number of free events
observed. Since these estimates tend to be biased towards larger intervals, and as both Poisson
processes are coupled (and therefore must have the same rate), the estimate T c used at a grid cell c
is:

T c = min(E[T c
block],E[T c

free]). (1)
Let E be the number of change events (either a blocked-to-free or a free-to-blocked event) that
happened at c since the last time it was observed. E will have a distribution Po(λ = 1/T c · (tcnow −
tclast)) and the probability of an event at c is therefore

Pc(E > 0) = 1.0− e−(tclast−t
c
init)/T

c

. (2)

To sample the next goal position, Pc(E > 0) are considered as weights at every grid cell, and use
to construct a probability distribution over the whole map. This distribution is discretized more
coarsely by grouping square patches of change probabilities together and averaging their values, in
order to smooth out noise. This distribution is then used to sample the next goal position, if the
Poisson based exploration policy is used.

The Recency Based Exploration strategy navigates the robot into areas that were not observed re-
cently. At every time step, each cell c that is observed is flagged with a timestamp tclast (this in-
cludes the current cell). For sampling a goal position, a recency weight is computed at every cell as:
rc = tnow−tclast where tnow is the current time. These weights are then used to construct a probability
distribution over the whole map. from which to sample a goal position.

4 Proposed method

The robot first decides on an exploration strategy and then uses it to sample a goal position. The
strategy choice is based on two real-valued, non-negative features:

p =
∑
c∈M

Pc(E > 0) and r = max
c∈M

rc.

Intuitively, a high p suggests that more changes have happened that were not observed, which in
turn favours Poisson exploration. A high r suggests that a cell has not been visited for a long time,
which should favour recency-based exploration. Reinforcement learning is used to determine the
strategy choice based on these two features. Since the features are continuous, a tile coder with five
overlapping tilings is used to approximate the value function. The tilings have random displacement;
each tile has a size of 0.5 × 100.0, i.e. the p value is scaled up (divided by 0.5) and the r value is
scaled down (divided by 100.0). The algorithm for learning which strategy to use is summarized
below.
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Pick a strategy S uniformly at random.
loop

Determine the next goal position using strategy S and send to controller module.
Let T = {} be an empty sequence of feature pairs (p, r). . Also called trajectory.
while Controller module navigates robot do

Update all maps and parameters in mapping module and receive maps.
Compute (p, r) according to Equations (4).
Append (p, r) to T.

end while
Evaluate T with a reward R = number of map changes

length of T .
for each (p, r) ∈ T do

VS(p, r)← VS(p, r) · (1− λ) +R · λ . λ = 0.9 is a parameter.
end for
Choose the next strategy S with probability P (select S) ∝ exp(VS(p, r)/τ).

. τ = 2.0 is a parameter.
end loop

The whole exploration process is subdivided in time, with each loop iteration representing the ex-
ploration of a specific area. The agent does not update and re-decide after each time step, as there
are long periods during exploration when nothing new is observed. As the agent tries to maximize
the number of map updates, these time steps can cause it to unlearn previously learned values, due to
the rewards being zero for many time steps. The algorithm we adopted does not have this issue, as it
waits for the exploration of a local area to complete and then gives a reward with uniform weighting
over the whole trajectory of feature pairs.

Further, the fact that the learning agent only has to choose a goal state simplifies the learning task.
Computing actual velocity commands, handling obstacle avoidance, and executing recovery be-
haviors if the robot gets stuck, will all be handled in this controller, so the learning task itself is
simplified.

5 Experiments

The Curious Exploration Algorithm was tested first in a grid world simulator, on different map
configurations, and its performance was compared with a version using only the Recency-based or
only the Poisson-based exploration strategy. In all experiments the robot started in the center of
the map (position (0, 0)) and every experiment was repeated five times. We present results for the
sample map in the left panel of Figure 3, which has the property that the motion of the objects we
hope to discover is fairly wide spread and not clustered in a particular area. The rate of change of
the cells in the two areas is also different, which makes the exploration problem harder. The data
shown in Figure 3 was collected with a controller that was allowed to make at most 42 steps, which
is the length of the longest path of a block in the world (the controller was not allowed to make 2 or
more consecutive random steps). This particular grid world is deterministic, but we note that very
similar results were obtained in a grid world with stochastic transitions (omitted for lack of space).

Figure 3 shows that the Curious Exploration algorithm learns the rate of change of a grid cell faster
than the versions using only the Recency Based and Poisson Based exploration strategies. The Pois-
son Based exploration strategy is interested only in navigating to changing areas. At the beginning
of the exploration process, it will first randomly zig-zags until a first change is detected. This will
cause the agent to find a small change interval (high rate of change) at one or a few cells. Then, it
will stop moving randomly and only sample these few changing cells as goal states. This strategy
locks down on an area and therefore its overall map quality is lower. Recency-based exploration
causes the robot to zig-zag through its world , continually, which yields a complete map, but the
behaviour is more chaotic.

The configuration of the controller has an influence mostly on the performance of the Poisson Based
exploration strategy. If the controller is allowed to follow changes in its surrounding cells for a
sufficiently long amount of time, it will (often) follow the moving block. So if only the Poisson
Based exploration strategy is used and the agent passes by the moving block, this block will be
followed and the changing cells will be traversed. This will help the Poisson Based exploration
strategy to extend its map and capture more cells that are changing. As this strategy causes the agent
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to stay within the changing area, it learns the rate of changes faster than Recency-based exploration
would. So if the robot spends more time on observing changing areas, the rate estimates are learned
faster. However, observing an actual change in the occupancy map is not necessary for that.

4 Evaluation

4.1 Grid World Experiments

add description of stochastic results.

The Curious Exploration Algorithm was tested within the Grid World Simulator on di↵erent
map configurations and its performance was compared with a version using only the Recency based
or only the Poisson based exploration strategy. In each configuration the robot started at the centre
of the map (position (0, 0)) and each test was repeated five times. The best results were achieved
with the world configuration shown in Figure (3), a complete list of all tests and their results can be
found in Appendix A (all plots show the average over all five test runs). The di↵erence of this map
in comparison to all other tested maps is that the changing cells are not clustered, i.e. the blocks
are also moving over a larger area. Further, the rate of changes of the cells in the two areas are
di↵erent. This makes the configuration shown in Figure (3) the most complex map / model that
was tested.

Figure 3: 25x25 grid test map with
two moving blocks. The top block
changes position every 7 time steps
and moves over 6 positions, the bot-
tom block changes position every 2 time
steps and moves on a cycle along the
bottom wall.

Figure (4) shows that the Curious Exploration algo-
rithm learns the rate of change of a grid cell faster than the
versions using only the Recency Based and Poisson Based
exploration strategies. Debugging the simulation and ob-
serving the behaviour of the di↵erent strategies gave the
following explanation of the results:
The Poisson Based exploration strategy is interested only
in navigating to changing areas. At the beginning of the
exploration process, it will first randomly zig-zag its map
until a first change is detected. This will cause the agent
to find a small change interval (high rate of change) at
one or a few cells. Then it will stop moving randomly
through its world and will then only sample these few
changing cells as goal states. Hence the behavior is that
this strategy locks down on this area and will therefore
not construct a complete map. As a result, the overall
map quality will not reach the level of the other versions.
The behavior of the Recency Based exploration strategy
is that the robot navigates through its world in a zig-zag
fashion throughout the whole exploration process. This
exploration strategy will therefore obtain a complete map
of the robot’s world. Hence the overall map quality will
be better than the quality of the Poisson Based exploration strategy.
The configuration of the controller has an influence mostly on the performance of the Poisson Based
exploration strategy. If the controller is allowed to follow changes in its surrounding cells for a suf-
ficiently long amount of time, it will (often) follow the moving block. So if only the Poisson Based
exploration strategy is used and the agent passes by the moving block, this block will be followed
and the changing cells will be traversed. This will help the Poisson Based exploration strategy to
extends its map and capture more cells that are changing. As this strategy causes the agent to stay
within the changing area, it learns the rate of changes faster than Recency based exploration would.
So if the robot spends more time on observing changing areas, the rate estimates are learned faster.
However, observing an actual change in the occupancy map is not necessary for that.The data shown

only spend-
ing more
time on
changing
areas will
help to learn
the rate esti-
mates faster,
observing
a change in
the occu-
pancy map
is not nec-
essary for
that.

in Figure (4) was collected with a controller that was allowed to make at most 42 steps, which is
the length of the longest path of a block in the world (the controller was not allowed to make 2
or more consecutive random steps). Figure (5) shows the results of a test where the controller was
only allowed to make one step.

mention that following objects is necessary as the sensor in this setup is short ranged.
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Figure 3: Evaluation Results for the 25x25 grid test map with two moving blocks shown in the left
panel. The top block changes position every 7 time steps and moves over 6 positions, the bottom
block changes position every 2 time steps and moves on a cycle along the bottom wall. The Curious
Exploration algorithm learns the rate of change of each cell in its map faster than a version only
using the Recency based or Poisson based exploration strategies (middle plot). In terms of map
quality, the Curious Exploration algorithm performs as well as using the Recency Based exploration
strategy (right plot).

Figure 4: Stage Simulation Configuration. Left: the starting position of the robot that ran the Curious
Mapping module (robot in lower left) and a ’dummy’ moving robot (upper right). The green shaded
areas are the field of view of the laser range sensors. Right: the path the ’dummy’ robot (green
trace).
Curious exploration was also tested in a Stage simulation, in order to evaluate its performance in a
more realistic scenario. In this simulation, a 12× 12 meter map was used, which divided the robot’s
world into four rooms (see Figure 4). A diff-drive robot was configured to move along a wall and
go back and forth between two pre-configured coordinates. This robot also had a laser range sensor
to detect obstacles in its path. If its path became temporarily blocked, the robot stopped moving
until its path became free again. The curious exploration mapping module was then run on a second
diff-drive robot with a laser range sensor. This robot was manually operated to move it through the
world. The laser range sensor was configured to have a range large enough to completely cover a
room. To estimate its position, the mapping module used noise-free odometry data, i.e. the data had
an error with zero variance and it did not accumulate observation bias.

Figure 5 shows the maps created in Stage. The left panel shows that the created occupancy map
is fairly accurate and contains little noise. Tthe rate map (center map) shows that the path of the
moving robot was correctly detected by estimating a shorter change interval at cells that correspond
to coordinates on the moving robot’s path. The noise in the updates of the occupancy map also
caused the mapping module to detect higher rates of change in areas that correspond to static walls
in the Stage world. However, this noise can be removed by using the occupancy map. The change
probability map on the right in Figure 5 shows that high probabilities are only estimated at cells that
correspond to positions visited by the moving robot.

6 Discussion

We presented an approach for tracking changes in an environment which is non-stationary and
changes over time. We use reinforcement learning to train a robot choosing between two different

5



−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6
x coord. in meter

−6

−4

−2

0

2

4

6

y
co

or
d.

in
m

et
er

10

20

30

40

50

60

70

80

90

100

In
te

rv
al

E
st

im
at

e
in

se
c

−4 −2 0 2 4 6
x coord. in meter

−4

−2

0

2

4

6

y
co

or
d.

in
m

et
er

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
ha

ng
e

P
ro

ba
bi

lit
y
P
c
(E

>
0)

Figure 5: Obstacle and interval map learned in Stage experiment. The red thick stripe in the top
right corner of the rate map shows that the trajectory of the moving robot was detected and that a
higher rate of change in this area was learned. Due to discretization errors in the mapping, the rate
map will have smaller interval estimates for wall cells in the robot’s world. However, this noise can
be removed using the obstacle map.

exploration strategies: one based on recency, the other based on detecting the rate of change in the
environment. Our approach is geared towards continual mapping of a non-stationary environment,
in which the map has to be continually updated.

The most related research topic to this work is Simultaneous Localization and Mapping (SLAM)
(see Durrant-Whyte & Bailey, 2006a,b[2, 1] and Grisetti et al, 2011 [3], for excellent tutorials on
this topic). SLAM is a cornerstone of modern robotics, in which a robot has to simultaneously learn
a map of its environment and learn how to localize. In SLAM, most of the interesting information is
acquired in the early phases of the algorithm. In contrast, we focus on adapting the robot’s knowl-
edge as quickly as possible when changes are detected, and on obtaining behavior that generates
persistent exploration patterns. Note that although we focus here on map learning, the proposed
approach is generally applicable for artificial agents that have to learn predictions about the states of
their environment.

In reinforcement learning, several exploration strategies have been proposed (see Sutton & Barto,
1998 [6] and Szepesvari, 2010 [7] for overviews of these methods). However, the goal there is differ-
ent, in that the agent is assumed to be in a stationary environment, in which its goal is to maximize
a measure of long-term performance. In contrast, we focus here on non-stationary environments.
The closest work in spirit to our approach is that in intrinsically motivated reinforcement learning
(Singh et al, 2004 [5], and follow-up papers). In that setup, rewards are designed for the agent in or-
der to encourage it to discover “optimal behavior”. These rewards may contain a component which
encourages exploration. However, the goal of this approach is still (ultimately) to maximize some
kind of reward. Our work is more focused on curiosity for the sake of improving the agent’s internal
representation, without a specific reward maximization goal in mind. Future work will include a
direct comparison with these methods.
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