
Off-Policy Control under
Changing Behaviour

Lucas Lehnert

School of Computer Science
McGill University, Montreal

August, 2016

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Master of Science. ©Lucas Lehnert; 2016.

Contents

Contents i

1 Introduction 1
1.1 Finding Policies with a Known Model . 1
1.2 Learning from Temporal Differences . 2
1.3 Directly Maximizing Return . 4
1.4 Contributions . 5

2 Reinforcement Learning 7
2.1 Markov Decision Processes . 7
2.2 Temporal Difference Learning . 13
2.3 Off-Policy Learning . 19
2.4 Gradient Based TD Methods . 21
2.5 Policy Iteration Methods . 25
2.6 Policy Gradient Methods . 29

3 Off-Policy Control 31
3.1 Derivation of the PGQ Algorithm . 32

4 Experiments 38
4.1 Baird Counter Example . 38
4.2 Mountain Car . 39
4.3 Acrobot . 40

5 Conclusion and Future Work 44
5.1 Conclusion . 44
5.2 Future Work . 45

Bibliography 47

i

CONTENTS ii

Abstract

Reinforcement learning, as a part of machine learning, is the study of how to

compute intelligent behaviour strategies that maximize a particular objective. Typically

one considers an intelligent agent that interacts with its world and receives feedback in

the form of a scalar value, called the reward. The goal is to find a behaviour strategy,

called a policy, which maximizes an accumulative function of all rewards received during

the agent’s lifetime. Off-policy learning refers to the problem of learning a particular

policy while using a different one to interact with the world. Gradient-based off-policy

algorithms such as TDC [Sutton et al., 2009a] and GQ(λ) [Maei and Sutton, 2010]

are incremental algorithms that are proven to converge even when used with linear

function approximation. They have been developed for predicting the performance of a

given fixed policy. However, in control problems one needs to search for a good policy

by starting with a random policy and improving it over time. For the algorithm to

incrementally improve a particular policy it needs to be able to adapt the policy during

learning.

This thesis presents the first off-policy gradient-based learning algorithm that adapts

the behaviour policy and accounts for how this effects the data the algorithm will see in

the future. The algorithm, similar to the GQ(0) algorithm, is derived while leveraging

ideas from policy gradient methods. Further, empirical evidence showing improved

performance over existing approaches is presented.

CONTENTS iii

Résumé

L’apprentissage par renforcement, un sous-domaine de l’apprentissage automatique,

a pour but de parvenir à des comportements intelligents visant à maximiser un certain

objectif. Typiquement, on considère l’existence d’un agent intelligent qui interagit avec

le monde et reçoit de l’information sous forme d’un nombre appelé récompense. Le but

est de trouver une stratégie comportementale, appelé politique, visant a maximiser les

récompenses reçues durant la durée de vie de l’agent. "Off-policy learning" considère le

probleme d’apprendre une politique en utilisant une autre pour interagir avec le monde.

Les algorithmes "Gradient-based off-policy" (hors ligne de conduite et basé sur une

dénivellation) comme TDC [Sutton et al., 2009a] et GQ(λ) [Maei and Sutton, 2010] sont

des algorithmes itératifs qui ont une preuve de convergence même si utilisés avec des

fonctions d’approximation linéaires. Ils ont été developpé pour prédire la performance

d’une politique donnée. Par contre, dans les problèmes de contrôle, il faut chercher une

bonne politique en commençant par une politique aléatoire puis en l’améliorant avec

le temps. Pour que l’algorithme puisse améliorer itérativement une politique, il doit

pouvoir adapter la politique au fur et à mesure de l’apprentissage.

Cette thèse présente le premier algorithme d’apprentissage "off policy, gradient

based" qui ajuste la ligne de conduite comportementale et tient compte comment ces

effets de données de l’algorithme seront perçus dans l’avenir. L’algorithme, similaire à

l’algorithme GQ(0), s’inspire des idées des méthodes "policy gradient". De plus, des

preuves empiriques montrant la meilleure performance de l’algorithme comparée aux

performances des méthodes existantes sont présentées.

CONTENTS iv

Acknowledgements

First, many thanks go to my advisor Doina Precup for her advice, encouragement, and

guidance on my first step of how to be a researcher.

I would also like to thank Rich Sutton, Michael Littman, and Csaba Scepesvari for

insightful discussions, showing me new aspects of my work, and for improving my research.

My thanks also go to Pierre-Luc Bacon for many very helpful discussions. Further, special

thanks go to Alan Do-Omri for his help with French translations and Valerie Burgardt for

her linguistic advise and proofreading of this thesis.

Finally, I am grateful to my family for their constant loving support.

1
Introduction

Reinforcement learning (RL) is the study of how an intelligent agent interacts with its world

to optimize some objective. The interaction between the agent and its world consists of the

agent selecting an action which changes the state of the world. After such a state transition,

the world provides the agent with a reward, a single scalar number. Ultimately, the goal

of the agent is then to chose actions intelligently given the current state so that the total

experienced reward is maximized.

A particular strategy specifying which action the agent chooses at which state is called a

policy. Sutton and Barto [1998] provide different algorithms for approaching how to learn a

policy. One concept used in many methods is that of a value function which estimates the

expected return a particular policy can generate starting at a particular state in the system.

Learning the value function of a particular policy is called the prediction case, whereas

searching for a policy maximizing the total experienced reward is called the control case. The

following sections summarize various approaches to learn a policy.

1.1 Finding Policies with a Known Model
Dynamic programming methods [Sutton and Barto, 1998, Chapter 4] are algorithms which

compute an optimal policy or value function given a perfect model of the world. These

methods do not learn through interacting with their world and instead have access to a

perfect model. Computing the value function of a particular policy is called policy evaluation.

In the subsequent policy improvement step, the policy is advanced using the model and

1

CHAPTER 1. INTRODUCTION 2

the value function computed during the previous policy evaluation step. Repeating policy

evaluation followed by a policy improvement step until no further improvement can be made

is called policy iteration.

Perkins and Precup [2003] introduced a convergent form of approximate policy iteration.

This algorithm estimates the value function using transition data and subsequently improves

the current policy using an improvement operator. Hence, a perfect model of the world is

not required. These two steps are repeated until the improvement operator is not able to

improve the policy any further. One key innovation of this work lies in the design of the

improvement operator which generates a sequence of policies where changes in the policies

are smooth. This smoothness property of the policy sequence allows to prove convergence

of the method when a linear function is used to approximate the value function. However,

this method is a policy iteration algorithm which first estimates the value function using a

batch of transition samples and then improves the current policy. While it may be possible

to approximate the value function with only one transition sample and improve the policy

after every transition (which means the algorithm performs incremental online control), this

algorithm does not evaluate and improve the current policy estimate simultaneously.

1.2 Learning from Temporal Differences
Temporal difference learning (TD-learning) is a class of algorithms that learns from an

error signal called the Temporal difference error (TD-error). Sutton [1988] introduced the

first TD-learning algorithm which estimates the value function of a fixed policy by finding

the value function estimate that satisfies the Bellman fixed point [Bertsekas, 1996]. This

algorithm calculates TD-errors to characterize how far the current value function estimate

deviates from satisfying the Bellman fixed point. The major advantage of this approach

is that TD-errors can be calculated from a single interaction between the agent and the

world. Hence TD-learning algorithms are incremental and estimates can be updated after

each interaction.

In TD-learning one distinguishes between two different use cases. One is called the

prediction case where the algorithm estimates a value function for a specified fixed policy.

CHAPTER 1. INTRODUCTION 3

The other is called the control case where the algorithm simultaneously searches for an

optimal policy and estimates its value function. A commonly used prediction algorithm is

TD(0) [Sutton, 1988] which estimates the value function of a fixed policy as a function of only

the state. The SARSA algorithm [Rummery, 1995] is a an extension of the TD(0) algorithm

to the control case. SARSA also uses TD-errors to estimate the value function, but views it

as a function of state-action pairs. Estimating the expected return for each state-action pair

has the advantage that a policy can be directly computed form these estimates. Typically

such a policy selects high valued actions with higher probability than low valued actions.

Using the current value estimates, SARSA computes a policy to interact with its world.

As the estimates vary over time, the policy used to select actions also varies over time.

Singh et al. [2000] showed that under certain conditions this algorithm can find an optimal

policy satisfying the Bellman Optimality condition [Bertsekas, 1996, Sutton and Barto, 1998].

However, SARSA may converge only to a region in which it may oscillate indefinitely [Gordon,

2001, 1996]. This phenomenon is called chattering.

TD-learning was also extended to the off-policy learning case. In Off-policy learning

one learns a target policy while interacting with the agent’s world according to a different

behaviour policy. Being able to learn off-policy is very useful because the behaviour policy

can be defined by a human user or stem from noisy data. Q-learning [Watkins and Dayan,

1992, Watkins, 1989] is an example of an off-policy control algorithm. This algorithm is

similar to SARSA, however, Q-learning estimates a state-action value function for a target

policy that deterministically selects the action of highest value. The policy used to interact

with the agent’s world may be any different policy. Jaakkola et al. [1994] proved that

Q-learning converges to an optimal solution satisfying the Bellman Optimality condition.

However, if function approximation is used to approximate the state-action value function,

convergence cannot be guaranteed. In fact, on a classical domain known as the Baird counter

example [Baird, 1995] Q-learning diverges monotonically [Maei et al., 2010].

Precup et al. [2001] presented the first provably convergent off-policy TD-learning al-

gorithm. This algorithm uses products over importance sampling ratios to correct for the

probability of sampling a trajectory under a behaviour policy that is different from the target

policy. However, due to the use of products of importance sampling ratios, this method

CHAPTER 1. INTRODUCTION 4

suffers from high variance, thus making the algorithm impractical.

Gradient based TD-learning algorithms such as GTD(0) [Sutton et al., 2009b] and

TDC [Sutton et al., 2009a] are a different class of algorithms that are stable under off-policy

training whenever the value function is estimated using linear function approximation. The

approach is different in that an objective is defined over the whole state and action space of

the agent’s world. Sutton et al. used this objective to derive a stochastic gradient descend

algorithm similar to TD-learning. By the design of the objective function, which takes into

account approximation errors and the probability of reaching a particular state, the obtained

algorithm converges under off-policy learning and linear function approximation. Since the

probability of reaching a particular state is explicitly modelled in the objective function,

products over importance sampling ratios are not necessary to correct the probability of

seeing a particular trajectory so far, but they are still used for correcting the probability of a

single transition. Thus, gradient based TD-learning algorithms are more stable in comparison

to the algorithm presented by Precup et al. [2001]. The extension of these methods to

the control case are the GQ(λ) [Maei and Sutton, 2010] and GreedyGQ [Maei et al., 2010]

algorithms. However, these algorithms are only guaranteed to converge if the behaviour

policy is fixed. As we will show in Chapter 4, on two standard control problems GQ(0) is

not able to converge to an efficient control policy if its behaviour policy is allowed to vary

between time steps. The requirement of a fixed behaviour policy makes these algorithm

unsuitable for control problems where a good policy is unknown and needs to be discovered

by the control algorithm.

1.3 Directly Maximizing Return
Another approach to learning a good policy is the use of policy gradients which was first

introduced by Sutton et al. [2000]. Such a method assumes the policy to be a differentiable

function of a particular parameter vector. The objective one considers is the expected total

return a particular parameter vector can generate. Sutton et al. present a policy iteration

algorithm which maximizes the total return using policy gradients. While this method is

provably convergent, it requires to find an approximation of the value function before the

CHAPTER 1. INTRODUCTION 5

policy parameters can be improved with a gradient update. Depending on the implementation

and application scenario, it may be computationally expensive to find an approximation

of the value function or one may have to sample a batch of transition data to compute an

approximation. Nevertheless, the policy can be non-linear in its parameters and so powerful

function approximation methods, especially deep neural networks, can be employed.

Actor Critic methods are another approach to learning a good policy [Sutton and Barto,

1998, Chapter 6.6]. They make an explicit distinction between the policy used to select

actions, called the actor, and the value function used to evaluate the policy, called the critic.

These methods also incorporate TD-errors to update the critic which then updates the actor

to improve the current policy.

Degris et al. [2012] introduce an off-policy Actor-Critic algorithm which uses GTD(λ)

to learn the value function of the critic. Since gradient based TD-learning methods are

used, they prove convergence in the control case when linear function approximation is used.

However, Thomas [2014] shows that the gradient update is biased and that for certain cases

the convergence proof does not hold.

1.4 Contributions
In this thesis we introduce a new gradient based control algorithm similar to the GQ algorithm

which incorporates policy gradients, by approaching the algorithm derivation similar to policy

gradient methods. The key innovation is to consider the policy to be an operator on top of

the value function, which allows the algorithm to search more directly in the space of all

possible control policies by accounting for the interaction between the control policy and the

distribution with which interaction data is sampled. Existing methods such as Q-learning,

SARSA, and GQ do not consider how changing the control policy changes the probability

of making a particular transition. Our method is the first algorithm that considers this

interaction between control policy and the probability of making a particular transition,

which results in performance and stability improvements over existing methods. The idea of

considering the policy to be merely an operator on top of the value function is similar to

the idea of using an improvement operator in the approximate policy iteration algorithm

CHAPTER 1. INTRODUCTION 6

mentioned in Section 1.3. Ultimately our analysis yields the first algorithm that performs

policy evaluation and improvement simultaneously and can adapt its policy incrementally

after every interaction between the agent and the world.

First the technical foundations are presented in Chapter 2, followed by the derivation of

the algorithm in Chapter 3. Chapter 4 shows empirically that the presented method remains

stable when used with linear function approximation for off-policy control, similar to existing

gradient based TD-learning algorithms. Further, we show that our method also outperforms

existing gradient based TD-learning algorithms on a set of standard benchmark domains by

finding a more efficient policy. Chapter 5 concludes with a discussion of how the presented

research can be continued.

2
Reinforcement Learning

This chapter presents some fundamental concepts in sequential decision making and RL.

Based on these concepts, different approaches to learn efficient policies in the context of RL

are introduced.

2.1 Markov Decision Processes
A discrete-time stochastic process is a sequence of random variables (r.v.s) Xt indexed by a

time parameter t ∈ N = {0, 1, 2, ...}. The value of the random variable is called the state of the

process and the space of all possible states is denoted with S. One key purpose of stochastic

processes is to model phenomena that are correlated between consecutive time steps. Rather

than viewing the sequence or r.v.s as a family of identically and independently distributed

(i.i.d.) random variables one often uses them to model correlations between different time

steps. If the distribution of a random variable Xt is dependent only on the outcome of the

random variable at the previous time step Xt−1, then we say that the discrete-time stochastic

process fulfills the Markov property. Such a stochastic process is called a Markov chain.

Definition 1 (Markov Chain). Let S be a set of possible outcomes and {Xt|t ∈ N} be

a discrete-time stochastic process where Xt takes values xt ∈ S. The stochastic process

{Xt|t ∈ N} is called a Markov chain if it fulfills the Markov property

∀t ≥ 0, P{Xt+1 = xt+1|X0 = x0, ..., Xt = xt} = P{Xt+1 = xt+1|Xt = xt}.

The random variable X0 is independently distributed to any of the other random variables.

7

CHAPTER 2. REINFORCEMENT LEARNING 8

Intuitively, this definition means that a Markov chain is a discrete-time stochastic process

where the first random variable X0 follows a distribution over a state space S and the

distribution of any Xt+1 solely depends on the outcome of Xt at the previous time step t.

The distribution of X0 is often referred to as the start state distribution.

Another requirement can be imposed on a Markov chain such that the probabilities

P{Xt+1 = xt+1|Xt = xt} do not change over time. Thus the distribution of the next state

Xt+1 conditioned on Xt does not change with time index t. Such a Markov chain is called

stationary.

Definition 2 (Stationary Markov Chain). A Markov Chain {Xt|t ∈ N} with a state space

S is called stationary if

∀t ≥ 0,∀r ≥ 0, P{Xt+1 = y|Xt = x} = P{Xr+1 = y|Xr = x}, (2.1)

for some x, y ∈ S.

A Markov chain whose transition probabilities P{Xt+1 = xt+1|Xt = xt} change with the

time index t is called non-stationary. Suppose the state space is a finite set S = {s1, ..., sn}

and the transition probabilities are denoted with pi,j = PPP{Xt+1 = sj|Xt = si}. Then a

transition matrix for a stationary Markov chain is

PPP =

p1,1 · · · pn,1
...

. . .
...

p1,n · · · pn,n

 . (2.2)

This matrix is also called a Markov matrix. It is useful to use this notation when we think

about random walks through a Markov chain. For example, consider n different states where

the process starts at state 1. The start state distribution is modelled as an n dimensional

vector ddd0 = [1, 0, ...0]> whose entries sum to one. This means one reasons about a probability

distribution over the state space S with all mass concentrated at state 1. Suppose one

transition is made in the Markov chain. Using the transition matrix the distribution over

states after one time step can be computed with

ddd1 = PPPddd0.

CHAPTER 2. REINFORCEMENT LEARNING 9

After t time steps the distribution over the state space is

dddt = (PPP · · ·PPP)︸ ︷︷ ︸
t times

ddd0.

This transition matrix PPP can also be viewed as an operator on a probability distribution over

the finite state space S. The fixed point of such a Markov matrix is called the stationary

distribution.

Definition 3 (Stationary Distribution). Let {Xt|t ∈ N} be a Markov chain with a finite

state space S = {s1, ..., sn} and transition matrix PPP ∈ Rn×n. The vector ddd = [p1, ..., pn]>

whose entries lie in the interval [0, 1] and sum to one is called the stationary distribution of

{Xt|t ∈ N} if

ddd = PPPddd. (2.3)

Thus far a mathematical model has been introduced that represents how a system can

change between its states according to some stochastic transition dynamics. To be able

to represent an intelligent agent in such a framework, an agent needs to be able to make

decisions. The ability of making decisions is implemented in this system by adding a set

of actions A which is assumed to be finite in this thesis. In this model, making a decision

corresponds to selecting an action from the set A. Since the agent should be able to control

its state through selecting actions, the transition dynamics of the Markov chain are dependent

on the selected actions through conditioning the transition probabilities on the selected action

as well as the state of the system. The probability of reaching a specific state is denoted

with P{Xt+1 = st+1|Xt = st, At = at} where the selected action is modelled as the random

variable At. The agent chooses actions according to a policy which is a distribution over

the space of actions conditioned on the state. Typically a policy is denoted with π and the

probability of selecting an action is denoted with

π(a|s) = P{At = a|St = s}. (2.4)

If the agent selects actions deterministically, then the probability of selecting one action is

set to one whereas all other action selection probabilities are zero.

To this point a framework was introduced where an agent chooses actions to control

the transition model of a Markov chain on a step by step basis. One additional concept is

CHAPTER 2. REINFORCEMENT LEARNING 10

needed: the objective the agent can optimize. This is implemented through a reward function

r : S × A × S → R which gives a scalar reward to the agent after every transition. The

objective of the agent is then to find a policy π that maximizes the experienced reward. This

framework is called a Markov Decision Process.

Definition 4 (Markov Decision Process (MDP)). A finite action discounted Markov Decision

Process (MDP) is a quintuple M = 〈S,A, p, r, γ〉 where the set S is the state space, the

finite set A is the action space, the transition function p : S ×A× S → [0, 1] is defined as

p(st, at, st+1) = P{Xt+1 = st+1|Xt = st, At = at}, (2.5)

and the function r : S × A× S → R is the reward function. The discount factor γ ∈ [0, 1)

and if γ = 1.0 the MDP is un-discounted.

The discount factor γ has the effect of favouring short term rewards over long term rewards

by weighting the reward at time step t with a factor γt−1. If one looks at infinite-length

trajectories using a discount factor of γ < 1 is necessary to ensure that the total return,

the sum of all received rewards weighted by γt−1, remains bounded for any bounded reward

function. Section 2.1.1 discusses this in more detail.

Suppose an agent operates within an MDP and follows a fixed policy π. In this case, the

probability of transitioning from a state st to state st+1 is

P{Xt+1 = st+1|Xt = st} =
∑
a∈A

π(a|st)p(st, a, st+1). (2.6)

The fixed policy π together with the transition dynamics of the MDP defines a Markov chain

over the state space S. Since the agent still collects rewards while transitioning between

states, a Markov Reward Process emerges.

Definition 5 (Markov Reward Process (MRP)). A finite action discounted Markov Reward

Process (MRP) is a quadrupleR = 〈S, p, r, γ〉 where the set S is the state space, the transition

function p : S × S → [0, 1] is defined as

p(st, st+1) = P{Xt+1 = st+1|Xt = st}, (2.7)

and the function r : S × S → R is the reward function. The discount factor γ ∈ [0, 1) and if

γ = 1.0 then the MRP is un-discounted.

CHAPTER 2. REINFORCEMENT LEARNING 11

2.1.1 Value Functions: Quantifying the Quality of a Behaviour

The goal of RL is to find algorithms that can efficiently compute a good policy π directly

from interactions between the agent and its environment. This interaction data consists of

trajectories through the MDP which can have finite or infinite length. A finite trajectory is a

sequence of transition tuples

τ = {(st, at, st+1)}Tt=0 .

The state s0 is referred to as the start state and actions are sampled according to the

action selection probabilities of the policy π. The next state is then sampled according to

the transition function p of the MDP. Given a transition (st, at, st+1), the reward rt+1 =

r(st, at, st+1) is deterministic. Often the reward function is considered to be a function of

state-action pairs defined as

rE(s, a) = E
s′∼p(s,a,·)

[r(s, a, s′)] =
∑
s′∈S

p(s, a, s′)r(s, a, s′). (2.8)

According to Sutton et al. [2000], the quality of a policy can be characterized by the total

cumulative return

ρ(π) = lim
T→∞

1
T
E [r0 + r1 + · · ·+ rT |s0 ∈ S, π] , (2.9)

where the expectation is over all possibe trajectories τ of length T . The discounted cumulative

return is defined as

ργ(π) = E
[∞∑
t=1

γt−1rt

∣∣∣∣∣s0 ∈ S, π
]
, (2.10)

where the expectation is over all possible trajectories τ of infinite length starting at state s0.

The discounted cumulative return can be viewed as a function of the start state giving rise

to the value function [Sutton and Barto, 1998] defined as

V π(s) = E
[∞∑
t=1

γt−1rt

∣∣∣∣∣s0 = s, π

]
. (2.11)

The superscript denotes the dependence of the value function on the policy. By applying a

weight γt−1 to every reward one can favour short-term rewards over long-term rewards by

picking a γ close to zero. Since the summation is a series taking t from one to infinity, this

weighting scheme also ensures that values remain bounded for a bounded reward function

without having to make further assumptions on the transition dynamics of the MDP.

CHAPTER 2. REINFORCEMENT LEARNING 12

In the context of planning within an MDP, a value function characterizes the usefulness

or utility of a specific state to the agent. The generalization of this idea to state-action

pairs gives rise to the action-value function (also referred to as state-action value function or

Q-function) and is defined as

Qπ(s, a) = E
s′∼p(s,a,·)

[r(s, a, s′) + γV π(s′)]

= rE(s, a) + γ E
s′∼p(s,a,·)

[V π(s′)] . (2.12)

An optimal policy for starting at state s in a given MDPM is defined as

π∗ = arg sup
π
V π(s). (2.13)

The value functions under an optimal policy are denoted as

V ∗(s) = sup
π
V π(s), Q∗(s, a) = sup

π
Qπ(s, a). (2.14)

The following two theorems [Sutton and Barto, 1998] further characterize an optimal policy

based on its value function.

Theorem 1 (Bellman Equations). LetM = 〈S,A, p, r, γ〉 be an MDP with policy π, then

∀s ∈ S, V π(s) = E
a ∼ π(·|s)

s′ ∼ p(s, a, ·)

[r(s, a, s′) + γV π(s′)] , (2.15)

∀s ∈ S,∀a ∈ A, Qπ(s, a) = E
s′∼p(s,a,·)

[r(s, a, s′) + γV π(s′)] . (2.16)

Theorem 2 (Bellman Optimality). LetM = 〈S,A, p, r, γ〉 be an MDP with policy π, then

π is an optimal policy forM if and only if for all s ∈ S, π selects an action

a∗ ∈ arg max
a∈A

Q∗(s, a) (2.17)

with probability one. An action b 6∈ arg maxa∈AQ∗(s, a) is selected with probability zero.

Using Theorem 1 the Bellman optimality condition can be written for action-value

functions as

Q∗(s, a) = E
s′∼p(s,a,·)

[
r(s, a, s′) + γmax

b
Q∗(s′, b)

]
. (2.18)

CHAPTER 2. REINFORCEMENT LEARNING 13

This condition is also called the Bellman fixed point.

The following sections review several algorithms to tackle two common problems in RL:

the prediction problem where the value function of a fixed policy is estimated and the control

problem where an optimal policy is computed.

2.1.2 Vector and Function Notation

Aside from the experiments presented in Chapter 4, the state and action spaces are considered

to be both finite. Further, the ith entry of a vector vvv is denoted with vvv(i). If the vector vvv is

indexed by states or state-action pairs, the entry corresponding to state s is denoted with

vvv(s) for the former case and the entry corresponding to s, a is denoted with vvv(s, a) for the

latter case. For a matrix AAA the entry at the ith row and jth column is denoted AAA(i, j), the

ith row is denoted with AAA(i, ·), and the jth row is denoted with AAA(·, j). Vector norms are

denoted with || · ||. The L2 norm of a vector vvv is defined as

||vvv|| = ||vvv||2 =
√∑

i

|vvv(i)|2.

The L1 norm of a vector vvv is defined as

||vvv||1 =
∑
i

|vvv(i)|.

Lastly, the infinity norm of a vector is defined as

||vvv||∞ = max
i
|vvv(i)|.

Previously, the value functions have been defined as a function mapping the state space or

state-action space to the reals. Since we assume their domain to be finite one can also represent

these functions as a vector indexed by the state or state-action space. In the following chapters

this tabular definition and the functional definition are used interchangeably as they are

equivalent.

2.2 Temporal Difference Learning
One central goal in RL is to develop algorithms that can learn a good policy π through

interacting with their environment. In this online learning scenario, the agent has to update

CHAPTER 2. REINFORCEMENT LEARNING 14

its internal estimates every time it selects an action and observes a transition and reward.

One distinguishes between the prediction case, where one estimates the value function for a

fixed policy, and the control case, where one simultaneously evaluates the current policy and

improves it. In addition, in the control case the policy with which actions are selected varies

between consecutive time steps. Thus, the distribution from which transitions are sampled

changes from time step to time step.

Suppose we have an agent interacting with its environment according to a fixed policy π.

By Theorem 1

V π(s) = E [R(s, a, s′) + γV π(s′)] .

Suppose there is a probability distribution over the state space S and that the agent arrives

at a state s ∈ S with probability ps. Then one can write

∑
s∈S

psV
π(s) =

∑
s∈S

psE [r(s, a, s′) + γV π(s′)]

=⇒
∑
s∈S

psE [r(s, a, s′) + γV π(s′)− V π(s)] = 0

=⇒ E [r(s, a, s′) + γV π(s′)− V π(s)] = 0, (2.19)

where the expectation in the last line ranges over triplets (s, a, s′) and actions are selected

according to the fixed policy π. Using (2.19) we can define the Temporal Difference error

(TD-error) for any transition (s, a, s′) as

δ = r(s, a, s′) + γV π(s′)− V π(s). (2.20)

The TD(0) algorithm [Sutton, 1988] is an incremental algorithm that estimates the value

function V π for a particular fixed policy π by sampling transition triplets (s, a, s′) and then

moving the current value function estimate towards a fixed point that gives a zero TD-error.

Using moving average updates a particular value function estimate Vt+1(s) is computed with

Vt+1(s) = (1− α)Vt(s) + α [rt + γVt(s′)]

= Vt(s) + α [rt + γVt(s′)− Vt(s)]

= Vt(s) + αδ, (2.21)

CHAPTER 2. REINFORCEMENT LEARNING 15

for some learning rate α ∈ (0, 1]. These updates are applied until the estimates have

converged and δ = 0, resulting in a value function estimate satisfying the Bellman fixed point

condition (2.15) from Theorem 1. Algorithm 1 gives a listing of TD(0).

Algorithm 1 TD(0) Sutton [1988], Sutton and Barto [1998]
Input: An MDP 〈S,A, p, r, γ〉, a policy π, a learning rate α ∈ (0, 1], a start state sstart.
Initialize ∀s ∈ S, V π(s) = 0.
s← sstart
repeat
Sample a ∼ π(·|s)
Take action a, observe reward r and next state s′
V (s)← V (s) + α [r + γV (s′)− V (s)]
s← s′

until state s is terminal

TD(0) is considered a prediction algorithm because actions are selected with a fixed policy

π. Consider now the control case in which a policy π needs to be found that maximizes the

total return the agent receives. In this case, the same concepts are generalized to state-action

value functions and we define the TD-error based on a quintuple (s, a, r, s′, a′) as

δ = r(s, a, s′) + γQ(s′, a′)−Q(s, a), (2.22)

which gives rise to the update rule of SARSA [Rummery, 1995, Sutton and Barto, 1998]

Q(s, a)← Q(s, a) + α [r(s, a, s′) + γQ(s′, a′)−Q(s, a)] . (2.23)

Note that if the policy π is fixed, then SARSA makes the same updates as TD(0) does but

for a function defined on S × A. The advantage of updating an action-value function is

that the action values can be directly used to calculate a control policy. Typically, either an

ε-greedy policy (Definition 6) or a Boltzmann policy (Definition 7) is used.

Definition 6 (ε-Greedy Policy). Given an action-value function Q, a policy π is called

ε-Greedy if it selects an action a at state s with probability

π(a|s) =

(1− ε) 1

m
if a ∈ arg maxaQ(s, a)

ε 1
|A| otherwise,

(2.24)

where m = |{a|a ∈ arg maxaQ(s, a)}| (the number of actions of highest value) and ε ∈ [0, 1]

is a parameter.

CHAPTER 2. REINFORCEMENT LEARNING 16

Definition 7 (Boltzmann/Softmax Policy). Given an action-value function Q, a policy π is

called Boltzmann or Softmax if it selects an action a at state s with probability

π(a|s) = exp (Q(s, a)/τ)∑
b∈A exp(Q(s, b)/τ) , (2.25)

where τ > 0 is a temperature parameter.

SARSA is a control algorithm which uses the current action-values to compute its control

policy and updates them using (2.23). Algorithm 2 gives a listing of SARSA. Expected

SARSA [Sutton and Barto, 1998, Exercise 6.10] is a variation of SARSA which computes the

expectation of the action selected at the next state s′ analytically rather than sampling the

action. The update rule of Expected SARSA is then

Q(s, a)← Q(s, a) + α [r(s, a, s′) + γEa′ [Q(s′, a′)]−Q(s, a)] , (2.26)

where Ea′ [Q(s′, a′)] = ∑
a′ π(a′|s′)Q(s′, a′). By computing the expectation analytically Ex-

pected SARSA is often more stable than SARSA in practice.

Algorithm 2 SARSA Rummery [1995], Sutton and Barto [1998]
Input: An MDP 〈S,A, p, r, γ〉, a learning rate α ∈ (0, 1], a start state sstart.
Initialize ∀s ∈ S, ∀a ∈ A, Q(s, a) = 0.
s← sstart
Choose a at s using a policy derived from Q
repeat
Take action a, observe reward r and next state s′
Choose a′ at s′ using a policy derived from Q
Q(s, a)← Q(s, a) + α [r + γQ(s′, a′)−Q(s, a)]
s← s′, a← a′

until state s is terminal

Q-learning [Watkins, 1989], another popular control algorithm, updates its Q-function

according to the rule

Q(s, a)← Q(s, a) + α
[
r + γmax

b∈A
Q(s′, b)−Q(s, a)

]
. (2.27)

Q-learning differs from SARSA in that the update rule uses a max-operator. Since the next

action of highest Q-value is used to make the update (irrespective of what the current policy

π is), Q-learning is considered an off-policy learning algorithm as it learns the Q-function for

CHAPTER 2. REINFORCEMENT LEARNING 17

a greedy policy while actions are selected according to a possibly different policy π. We will

discuss off-policy learning in more detail in Section 2.3. The use of the max-operator can be

motivated by the Bellman optimality condition (2.16) as one tries to match the update term

to the target estimate more directly. Algorithm 3 shows a full listing of Q-learning.

Algorithm 3 Q-learning Watkins [1989], Sutton and Barto [1998]
Input: An MDP 〈S,A, p, r, γ〉, a learning rate α ∈ (0, 1], a start state sstart.
Initialize ∀s ∈ S, ∀a ∈ A, Q(s, a) = 0.
s← sstart
Choose a at s using a policy derived from Q
repeat
Take action a, observe reward r and next state s′
Q(s, a)← Q(s, a) + α [r + γmaxb∈AQ(s′, b)−Q(s, a)]
s← s′

Choose a at s using a policy derived from Q
until state s is terminal

Both Q-learning and SARSA are proven to converge to an optimal policy if the value

function is represented as a table [Jaakkola et al., 1994, Singh et al., 2000]. For SARSA to

converge to an optimal policy satisfying the Bellman optimality condition (2.16), the control

policy must become greedy with respect to the action-values in the limit. Singh et al. [2000]

call this class of policies Greedy in the limit with infinite exploration (GLIE).

Definition 8 (GLIE - Greedy in the limit with infinite exploration). A policy is GLIE if it

satisfies the following conditions:

1. Every state-action pair is visited infinitely often.

2. In the limit, the policy selects the action of highest Q-value with probability one (w.p.1).

Singh et al. [2000] provide conditions so that the ε-greedy and Boltzmann policies fall

into the category of GLIE policies. Intuitively for one such policy to become more greedy

one needs to decay either the ε parameter or temperature τ over time. More specifically, if a

Boltzmann policy is used, Singh et al. prove that if the temperature parameter at time step

t and state s is τt(s) ∝ 1/ lnnt(s) (nt(s) is the number of times state s was visited at step t)

then the policy is GLIE. Similarly if an ε-greedy policy is used, one requires εt(s) = c/nt(s)

for c ∈ (0, 1) for the policy to satisfy the GLIE conditions. Under these conditions the

SARSA algorithm converges to an optimal policy. The intuition behind using GLIE policies

CHAPTER 2. REINFORCEMENT LEARNING 18

is that SARSA makes updates that are more and more similar to Q-learning as time passes

and the policy becomes more and more greedy. In the limit, both Q-learning and SARSA

become equivalent.

2.2.1 Function Approximation

In order to scale these methods to application domains with large state spaces, a common

approach is to use function approximation to approximate the value function. We will consider

only the case of linear function approximation where the value functions are approximated

with

Vθθθ(s) = θθθ>φ(s) ≈ V π(s), Qθθθ(s, a) = θθθ>ψ(s, a) ≈ Qπ(s, a), (2.28)

where φ : S → Rn and ψ : S ×A → Rn are basis functions. The form of these basis functions

as well as the dimension n of the parameter vector θθθ, is typically adapted to each application

domain separately.

The update rule (2.21) of the TD(0) algorithm can be rewritten to use linear function

approximation [Sutton and Barto, 1998] with

θθθt+1 = θθθt + αδ∇θθθVθθθ(s)

= θθθt + αδφ(s), (2.29)

where the TD-error is computed as

δ = r(s, a, s′) + γθθθ>φ(s′)− θθθ>φ(s).

Similarly, one can also rewrite the update rule (2.23) of the SARSA algorithm as

θθθt+1 = θθθt + α[r(s, a, s′) + γQθθθ(s′, a′)−Qθθθ(s, a)]∇θθθQθθθ(s, a)

= θθθt + α[r(s, a, s′) + γθθθ>ψ(s′, a′)− θθθ>ψ(s, a)]ψ(s, a). (2.30)

Sutton and Barto [1998, Chapter 8] provide a motivation explaining this way of using the

gradient of the value function.

One can also define the basis functions as zero-one bit vectors φ(s) ∈ R|S| and ψ(s, a) ∈

R|S×A| having zero entries everywhere except for the entry corresponding to the state s or

CHAPTER 2. REINFORCEMENT LEARNING 19

state-action pair s, a being set to one. It is easy to verify that this case corresponds to the

tabular versions (Algorithm 2 and 1) defined previously. We refer to the use of such basis

functions as the tabular case.

2.3 Off-Policy Learning
Off-policy learning refers to the problem of learning a policy different from the policy that is

used to generate the transition data. The ability to reuse data from one policy to learn a

different policy has many advantages. For example, this is useful in the context of robotics

in order to learn a good policy from noisy data. In control, off-policy learning is also

used to facilitate exploration. The Q-learning algorithm presented in the previous section

(Algorithm 3) is an example of an off-policy learning algorithm. Here the policy used to

generate the transition samples is arbitrary, whereas the algorithm updates its Q-function

for a policy that is greedy with respect to the Q-values because the max operator is used for

computing the next state-action Q-value. Typically the policy used to generate the transition

data makes exploratory random moves to ensure that the whole state-action space is sampled

and that the data from which the greedy target policy is learned is representative. This

technique facilitates exploration and allows the algorithm to converge to an optimal policy

faster.

The policy used for generating transition data is referred to as the control policy or

behavior policy b and the policy the agent tries to learn is referred to as the target policy π.

For example, for Q-learning one could choose an ε-greedy policy as the control policy b in

order to learn a greedy target policy π. Note that the greedy target policy is hard coded into

the Q-learning algorithm.

2.3.1 Importance Sampling

Suppose a trajectory τ = {(st, at, st+1)}Tt=0 is generated on an MDPM = 〈S,A, p, r, γ〉 by

some behaviour policy b and let p(s0) denote the probability of starting τ at state s0. Under

CHAPTER 2. REINFORCEMENT LEARNING 20

b, the probability of this trajectory to occur is then

P{τ |b} = p(s0)
T∏
t=0

b(at|st)p(st, at, st+1). (2.31)

Under a different target policy π, this trajectory is sampled with probability

P{τ |π} = p(s0)
T∏
t=0

π(at|st)p(st, at, st+1)

= p(s0)
T∏
t=0

b(at|st)
π(at|st)
b(at|st)

p(st, at, st+1)

= P{τ |b}
T∏
t=0

π(at|st)
b(at|st)

= P{τ |b}
T∏
t=0

ρt, (2.32)

where the importance sampling ratio

ρt
def.= π(at|st)

b(at|st)
. (2.33)

Sometimes ρt is also called the importance sampling correction.

2.3.2 Off-policy Temporal Difference Learning

Using importance sampling ratios the TD(0) algorithm can be rewritten as an off-policy

learning algorithm with the update rule

θθθt+1 = θθθt + αρδφ(s), (2.34)

where ρ = π(a|s)/b(a|s). However, on the Baird counter example [Baird, 1995] TD(0) as well

as Q-learning do not remain stable since their weights diverge monotonically to infinity [Sutton

et al., 2009a, Maei and Sutton, 2010].

Precup et al. [2001] derive a version of the TD(0) algorithm that accumulates the

importance sampling ratios over time to correct for the probability of the whole trajectory.

This version of TD(0) is provably convergent under off-policy learning with linear function

approximation. However, the algorithm suffers from high variance in the value function

estimation due to the use of products over importance sampling ratios.

CHAPTER 2. REINFORCEMENT LEARNING 21

In the next section gradient TD methods will be presented. These methods no longer

correct the probability of reaching a particular state with products over importance sampling

ratios. As a result, gradient TD methods do not suffer from high variance in the value

function estimation. Moreover, they are stable under off-policy training with linear function

approximation.

2.4 Gradient Based TD Methods
Gradient-based TD-learning algorithms such as GTD [Sutton et al., 2009b], GTD2, and

TDC [Sutton et al., 2009a] are the first incremental off-policy TD-learning algorithms that

remain stable if used with linear-function approximation. As previously stated, the value

function is approximated with

Vθθθ(s) = θθθ>φ(s) ≈ V π(s), Qθθθ(s, a) = θθθ>ψ(s, a) ≈ Qπ(s, a).

Let ||vvv||2DDD = vvv>DDDvvv be a weighted L2 norm where DDD = diag{d(s)}s∈S is a |S| × |S| diagonal

matrix. GTD2 and TDC both perform stochastic gradient descent on the Mean Squared

Projected Bellman Error (MSPBE) [Sutton et al., 2009a] objective defined as

MSBPE(θθθ) = ||VVV θθθ − ΠT πVVV θθθ||2DDD, (2.35)

where VVV θθθ ∈ R|S| is a vector listing all state-values Vθθθ(s), and T π is the Bellman operator

defined as

T πvvv
def.= RRRπ + γPPP πvvv, (2.36)

where RRRπ ∈ R|S| is a vector whose entries contain the expected reward Rπ(s) = E[r(s, a, s′)|s]

(the expectation is over the random variables a ∼ π(·|s) and s′ ∼ p(s, a, ·)) and PPP π is a

state-to-state transition matrix under a policy π. The projection operator is defined as the

matrix

Π = ΦΦΦ
(
ΦΦΦ>DDDΦΦΦ

)−1
ΦΦΦ>DDD,

where ΦΦΦ is a matrix with each row containing the basis function vector φ(s) for every state

s. This projection operator projects the one-step lookahead T πVVV θθθ back into the space of

CHAPTER 2. REINFORCEMENT LEARNING 22

all representable value functions. The use of this projection operator makes linear function

approximation stable because it performs a linear regression fit of the linear model to the

value function defined on the finite state space S (every state s can be thought of as one

data point in the domain of the value function that is fitted). Finding the parameter vector

θθθ which minimizes the MSPBE(θθθ) corresponds to finding the best approximation to the true

value function V π.

One key innovation of the MSPBE objective is the use of the weight matrix DDD which

applies a weight d(s) to the expected projected Bellman error at every state s. These weights

are interpreted as the probability with which a state is visited and are called the stationary

distribution. This distribution is invariant of the time step t in the simulated trajectory and

the start state of the trajectory. This use of the stationary distribution in conjunction with

the projection operator Π stabilizes TDC and GTD2 under off-policy training when it is used

with linear function approximation.

2.4.1 Derivation of TDC

To derive an incremental algorithm minimizing the MSPBE using transition samples of the

form (s, r(s, a, s), s′), the MSPBE objective is rewritten as

MSBPE(θθθ) = ||Vθθθ − ΠT πVθθθ||2DDD = E[δφ>]E[φφ>]−1E[δφ], (2.37)

where we define φφφ := φ(s) and φφφ′ := φ(s′). The gradient of the MSPBE is then

∇θθθMSBPE(θθθ) = 2∇θθθE[δφφφ>]E[φφφφφφ>]−1E[δφφφ]

= 2∇θθθE[(r(s, a, s′) + γθθθ>φφφ′ − θθθ>φφφ)φφφ>]E[φφφφφφ>]−1E[δφφφ]

= 2E[(γφφφ′ − φφφ)φφφ>]E[φφφφφφ>]−1E[δφφφ]

= 2(E[γφφφ′φφφ>]− E[φφφφφφ>])E[φφφφφφ>]−1E[δφφφ]

= 2E[γφφφ′φφφ>]E[φφφφφφ>]−1E[δφφφ]− 2E[δφφφ]

⇐⇒ −1
2∇θθθMSBPE(θθθ) = E[δφφφ]− E[γφφφ′φφφ>]E[φφφφφφ>]−1E[δφφφ] (2.38)

Since the expectations of the gradient have to be sampled independently, the weight doubling

trick first presented in Sutton et al. [2009b] is used and an auxiliary weight vector is defined:

www
def.= E[φφφφφφ>]−1E[δφφφ]. (2.39)

CHAPTER 2. REINFORCEMENT LEARNING 23

This auxiliary weight vector www can then be estimated with the update rule

wwwt+1 = wwwt + βt(δ − φφφ>wwwt)φφφ. (2.40)

This update rule allows the gradient of the MSPBE to be sampled directly to update the

parameter vector θθθ with

θθθt+1 = θθθt + αt(δφφφ− γφφφ′φφφ>wwwt). (2.41)

For this two-time scale stochastic approximation algorithm [Borkar, 1997, Sutton et al.,

2009a] the learning rates are typically set so that αt � βt. Intuitively, this condition on

the learning rates means that the sequence {wwwt} converges to its solution www faster than

the sequence {θθθt} does. As a result, θθθt appears as almost steady when www is estimated and

similarly wwwt appears as the correct auxiliary weight (as it converges quickly) when θθθt is

updated. To convert these update rules to the off-policy case, we consider the batch gradient

to select actions according to the behaviour policy b. The expectations of the gradient, which

are with respect to the behaviour policy b (this is denoted in the subscript of the expectation

operator), are then corrected with an importance sampling ratio ρ:

− 1
2∇θθθMSPBE(θθθ) = Eb[ρδφφφ]− Eb[ργφφφ′φφφ>]Eb[ρφφφφφφ>]−1Eb[ρδφφφ]. (2.42)

To sample this gradient, the update rules (2.41), (2.40) need to include the importance

sampling ratio ρ. Algorithm 4 shows a full listing of the resulting algorithm which is called

TDC.

This algorithm is proven to converge to the correct value function parameter θθθ under

off-policy training with linear function approximation if the samples (s, r(s, a, s′), s′) are i.i.d.

For the convergence proof, Sutton et al. [2009a] use the ODE method [Borkar and Meyn,

1999] and reduce the algorithm to work on a Markov Reward Process. This proof method

works well in the prediction case as the policy used to generate transitions is fixed.

2.4.2 Gradient Based Q-learning

Maei and Sutton [2010] generalize the TDC algorithm to estimate an action-value function

and derive a gradient based Q-learning algorithm called GQ(λ). The λ parameter in the

name is used for eligibility traces [Sutton and Barto, 1998, Chapter 7], which are an extension

CHAPTER 2. REINFORCEMENT LEARNING 24

Algorithm 4 TDC Sutton et al. [2009a]
Input: An MDP 〈S,A, p, r, γ〉, a target policy π, a behaviour policy b, a learning rate
α ∈ (0, 1], a start state sstart.
Initialize θθθ = 0, www = 0.
s← sstart, t← 1
repeat
Sample b ∼ π(·|s)
Take action a, observe reward r and next state s′
ρ← π(a|s)

b(a|s)
φφφ← φ(s), φφφ′ ← φ(s′)
δ ← r + γθθθ>φφφ′ − θθθ>φφφ
θθθ ← θθθ + αtρ(δφφφ− γφφφ′φφφ>www)
www ← www + βtρ(δ − φφφ>www)φφφ
s← s′, t← t+ 1

until state s is terminal

of the algorithm to make more efficient updates and which is disabled when λ = 0. Since we

do not consider eligibility traces in this thesis, we will consider an algorithm without the

eligibility trace extension which is equivalent to GQ(0). The derivation of this algorithm is

almost identical to the derivation of TDC. GQ(0) is also referred to as just GQ. For gradient

based Q-learning, one considers the stationary distribution to be a distribution over the

state-action space S ×A (now the diagonal matrix DDD is of size |S ×A|× |S ×A|) and defines

the MSPBE objective as

MSPBE(θθθ) def.= ||QQQθθθ − ΠT πQQQθθθ||2DDD. (2.43)

The Bellman operator T π and the projection operator

Π = ΨΨΨ(ΨΨΨ>DDDΨΨΨ)>ΨΨΨ>DDD

are still defined in the same way, but now a matrix ΨΨΨ containing the basis vectors ψ(s, a)

as rows for all state-action pairs is used. Moreover, the transition matrix PPP π is now of

size |S × A| × |S × A| and maps state-action pairs to state-action pairs (rather than states

to states). The reward vector RRRπ ∈ R|S×A| has entries Rπ(s, a) = E[r(s, a, s′)|s, a] (the

expectation is only over the random variable s′ ∼ p(s, a, ·)). For the prediction case, GQ has

the same convergence guarantees and stability properties that TDC has. However, GQ is

only proven to converge if the behaviour and target policies are fixed. Further, we will show

in Chapter 4 that on some standard control domains GQ(0) is not able to converge to an

CHAPTER 2. REINFORCEMENT LEARNING 25

efficient control policy if its control policy is allowed to vary between time steps, making

GQ(0) unsuitable for control problems where a good control policy is unknown and has to be

discovered by the algorithm. Algorithm 5 gives a listing of GQ, which is the same as the

TDC algorithm but uses a basis function ψ defined on the state-action space.

Algorithm 5 GQ(0), adopted from Maei and Sutton [2010]
Input: An MDP 〈S,A, p, r, γ〉, a target policy π, a behaviour policy b, a learning rate
α ∈ (0, 1], a start state sstart.
Initialize θθθ = 0, www = 0.
s← sstart, t← 1
repeat
Sample b ∼ π(·|s)
Take action a, observe reward r and next state s′
ρ← π(a|s)

b(a|s)
ψψψ ← ψ(s, a), ψψψ ← ∑

b π(b|s′)ψ(s′, b)
δ ← r + γθθθ>ψψψ − θθθ>ψψψ
θθθ ← θθθ + αtρ(δψψψ − γψψψψψψ>www)
www ← www + βtρ(δ −ψψψ>www)ψψψ
s← s′, t← t+ 1

until state s is terminal

Maei et al. [2010] present GreedyGQ, a version of the GQ algorithm where the target

policy π is greedy with respect to the action-value function estimate. They prove convergence

of the GreedyGQ algorithm with a non-stationary target policy π; however, they still assume

a fixed behavior policy b. The proof analyses the GreedyGQ algorithm as a Two Timescale

Stochastic Approximation algorithm [Borkar, 1997]. Since the ODE method [Borkar and

Meyn, 1999] is used, the policy b is required to be fixed as the transition samples (s, a, s′)

are assumed to be i.i.d. However, their proof is more evolved than the convergence proof of

GQ because the target policy is assumed to be parametric in the value function parameter θθθ,

which makes it non-stationary.

2.5 Policy Iteration Methods
This section explains how dynamic programming (DP) algorithms perform policy evaluation

and policy search. Consider an MDP M = 〈S,A, p, r, γ〉 with a finite state space S and

CHAPTER 2. REINFORCEMENT LEARNING 26

a finite action space A. In this case, the value function V π(s) is presented as a vector VVV π

indexed by states. Similarly, a reward vector RRRπ ∈ R|S| can be defined where each entry

corresponds to

Ea,s′ [r(s, a, s′)|s] =
∑
a,s′

π(a|s)p(s, a, s′)r(s, a, s′)

and a transition matrix TTT π ∈ R|S|×|S| where each entry is defined by

pi,j = P{sj|si} =
∑
a∈A

π(a|si)p(si, a, sj),

where si, sj ∈ S and i and j are integers indexing the finite state space. Using these matrix

definitions we can rewrite the Bellman Equation (2.15) as

VVV π = RRRπ + γTTT πVVV π. (2.44)

Since there is a closed form expression for the value function, it can be directly computed

simply by rearranging the previous equation:

VVV π = (III − γTTT π)−1RRRπ. (2.45)

Ng and Russell [2000] show that the matrix III − γTTT π is always invertible and therefore the

closed form expression can be used to compute the value function directly. However this

method is not particularly efficient as we have to compute the full transition matrix and

reward vector and then invert a matrix which can be very large if the state space of the MDP

is large.

2.5.1 Iterative Policy Evaluation

An alternative to this method is an algorithm called Iterative Policy Evaluation [Sutton and

Barto, 1998]. This algorithm initializes the value function vector with the zero vector and

then repeatedly iterates over the state space to push the value function estimates to the

Bellman fixed point (2.15). Algorithm 6 shows a listing of Iterative Policy Evaluation.

2.5.2 Policy Iteration

Policy iteration improves a policy iteratively until an optimal policy is obtained. Suppose

a policy deterministically chooses actions, i.e. it is a function mapping π : S → A, and its

CHAPTER 2. REINFORCEMENT LEARNING 27

Algorithm 6 Iterative Policy Evaluation adopted from Sutton and Barto [1998]
Input: A policy π, an MDP 〈S,A, p, r, γ〉, a small number ε > 0.
∀s ∈ S, V π(s)← 0.
repeat

∆← 0
for all s ∈ S do
v ← V π(s)
V π(s)← ∑

a∈A
∑
s′∈S π(a|s)p(s, a, s′)[r(s, a, s′) + γV π(s′)]

∆← max{∆, |V π(s)− v|}
end for

until ∆ < ε

corresponding action-value function Qπ(s, a).1 The current policy π can be improved by

always forcing it to greedily select the action of highest value, i.e. the improved policy πnew

is such that

∀s ∈ S, πnew(s) = arg max
a∈A

Qπ(s, a). (2.46)

Then Iterative Policy Evaluation is run again on the new policy πnew to obtain the new

action-value function Qπnew . Sutton and Barto [1998] prove that this repeated alternation

between policy improvement and policy evaluation will always converge to an optimal policy.

Algorithm 7 shows a listing of Policy Iteration.

Algorithm 7 Policy Iteration adopted from Sutton and Barto [1998]
Input: MDP 〈S,A, p, r, γ〉
Randomly initialize π
policyStable← false
while not policyStable do
VVV π ← IterativePolicyEvaluation(π,M)
for all s ∈ S do
πnew(s)← arg maxa∈A

∑
s′ p(s, a, s′)[r(s, a, s′) + γV π(s′)]

end for
policyStable← is π = πnew?
π ← πnew

end while
return π

1This can also be obtained by setting one action selection probability to one and all others to zero for
each state.

CHAPTER 2. REINFORCEMENT LEARNING 28

2.5.3 Approximate Policy Iteration

Perkins and Precup [2003] present the first policy iteration algorithm that learns from

interaction data (now a perfect model of the world is not necessary) which is provably

convergent when used with linear function approximation. Being a policy iteration algorithm,

this method performs first policy evaluation using the SARSA algorithm to learn the value

function and then improves the current policy using policy improvement. The key idea of

this work is to use a policy improvement operator Γ which maps action values to a policy

which is ε-soft. For an action value vector QQQ the policy Γ(QQQ) chooses an action at random

with probability ε. If ε is decreased slowly towards zero with every improvement step, the

algorithm will converge to an optimal policy satisfying the Bellman fixed point. This decrease

in ε is similar to using a ε-greedy GLIE policy, except that the parameter is decayed after

every policy improvement step (rather than with every transition the SARSA algorithm

makes, as described previously). Algorithm 8 shows a listing of Approximate Policy Iteration.

Algorithm 8 Approximate Policy Iteration from Perkins and Precup [2003]
Input: MDP 〈S,A, p, r, γ〉, an initial policy π, a basis function ψ with matrix ΨΨΨ containing
ψ(s, a) at every row, a policy improvement operator Γ, a start state sstart
s← sstart
repeat
Initialize θθθ arbitrarily.
Chose action a ∼ π(·|s)
repeat
Take action a, observe reward r and next state s′
Chose action a′ ∼ π(·|s′)
θθθ ← θθθ + α

[
r + γθθθ>ψ(s′, a′)− θθθ>ψ(s, a)

]
ψ(s, a)

s← s′, a← a′

until θθθ does not change
π ← Γ(ΨΨΨθθθ)

until π does not change
return π

While this algorithm is provably convergent, it distinguishes between an evaluation and

improvement step. Further this is an on-policy learning algorithm. Many more policy

iteration methods have been developed, see Bertsekas [2011] for an overview. All these

methods sequentially alternate between policy evaluation and policy improvement.

CHAPTER 2. REINFORCEMENT LEARNING 29

2.6 Policy Gradient Methods
Policy gradient methods were first introduced by Sutton et al. [2000] who approached the

problem of finding a good policy by directly maximizing the total expected return. Sutton

et al. [2000] introduced an algorithm for the un-discounted and discounted case; however, this

section only presents the discounted case. Consider a discounted MDPM = 〈S,A, p, r, γ〉.

If a policy πθθθ is used, the discounted total return starting at state s0 is defined by

ργ(πθθθ) = E
[∞∑
t=1

γt−1rt

∣∣∣∣∣s0, πθθθ

]
,

where the policy πθθθ is assumed to be parametrized by the vector θθθ. In this formulation, a

weighting over the state space is used which is defined as

dπθθθ(s) =
∞∑
t=0

γtP{s0 → s, t, πθθθ}, (2.47)

where P{s0 → s, t, πθθθ} is the probability of transitioning from state s0 to state s in t steps

while following the policy πθθθ. The policy gradient theorem then states the gradient of ργ(π)

with respect to θθθ.

Theorem 3 (Policy Gradient adopted from Sutton et al. [2000]). For any MDP M =

〈S,A, p, r, γ〉, the gradient of ργ(π) is

∇θθθργ(π) =
∑
s∈S

dπθθθ(s)
∑
a∈A
∇θθθπθθθ(a|s)Qπθθθ(s, a), (2.48)

where Qπθθθ is the state-action value function of πθθθ.

Proof. First the gradient of the value function V πθθθ with respect to θθθ is considered for any

state s ∈ S:

∇θθθV πθθθ(s) def.= ∇θθθ
∑
a∈A

πθθθ(a|s)Qπθθθ(s, a)

=
∑
a∈A

[∇θθθπ(a|s)Qπθθθ(s, a) + πθθθ(a|s)∇θθθQπθθθ(s, a)]

=
∑
a∈A

∇θθθπ(a|s)Qπθθθ(s, a) + πθθθ(a|s)∇θθθ
∑
s′∈S

[r(s, a, s′) + γp(s, a, s′)V πθθθ(s′)]

=
∑
a∈A

∇θθθπ(a|s)Qπθθθ(s, a) + πθθθ(a|s)
∑
s′∈S

γp(s, a, s′)∇θθθV πθθθ(s′)
 (2.49)

CHAPTER 2. REINFORCEMENT LEARNING 30

The unrolling of (2.49) can be repeated an arbitrary number of times to obtain

∇θθθV πθθθ(s) =
∑
s∈S

∞∑
t=0

γtP{s0 → s, t, πθθθ}
∑
a∈A
∇θθθπθθθ(a|s)Qπθθθ(s, a). (2.50)

Using the definition of ργ and V πθθθ (see (2.11)) gives

∇θθθργ(πθθθ) = ∇θθθE
[∞∑
t=1

γt−1rt

∣∣∣∣∣s0, πθθθ

]

= ∇θθθV πθθθ(s0)

=⇒ ∇θθθργ(πθθθ) =
∑
s∈S

∞∑
t=0

γtP{s0 → s, t, πθθθ}
∑
a∈A
∇θθθπθθθ(a|s)Qπθθθ(s, a),

as desired.

Using this theorem, Sutton et al. [2000] derive a convergent policy iteration algorithm

which uses function approximation for evaluating the current policy. Further, only a mild

compatibility condition between the policy and the function approximation model is required.

This requirement means that non-linear function approximation such as deep neural networks

can be used with this algorithm. However, the derived method, while provably convergent,

needs to compute an approximation of the value function before the policy can be improved

with a gradient update. Since finding an approximation of the value function involves

solving a system of equations, this step may be computationally expensive depending on the

application scenario.

3
Off-Policy Control

The GQ algorithm is an extension of the TDC algorithm to the control case and is derived

in the same way as its prediction counterpart. Hence GQ is only proven to converge if both

target and control policy are fixed, making the algorithm unsuitable for control problems

where a policy is unknown. In the control case the policy used to generate transition data is

typically computed from the current value function estimate. If linear function approximation

is used, the policies depend on the current estimate θθθt which is updated from time step to

time step. These variations in the value function parameter θθθt cause the policies computed

from them to change over time, resulting in a change in distribution with which transition

data is generated. Specifically, in the control case, the sampled transition data is not i.i.d.

solely due to variations in the value function parameter.

This observation can be used to derive a new gradient based TD-learning algorithm that

takes into account the interaction between changes in the policy and the value function

parameter. Hence, the Bellman operator T π, as well as the stationary distribution over

state-action pairs, both depend on θθθ:

MSPBE(θθθ) = ||Qθθθ − ΠθθθTθθθQθθθ||2DDDθθθ
. (3.1)

The Bellman operator parametric in θθθ is defined as

Tθθθvvv
def.= RRR + γPPP θθθvvv. (3.2)

The entry PPP θθθ((s′, a′), (s, a)) = p(s, a, s′)πθθθ(a′|s′) is the probability of transitioning from (s, a)

to (s′, a′) under the current policy πθθθ. Since the policy depends on θθθ, the matrix PPP θθθ and

31

CHAPTER 3. OFF-POLICY CONTROL 32

the Bellman operator Tθθθ depend on the parameter vector as well. By parametrizing the

Bellman operator in this way the one step lookahead considers how changing the value

function estimate changes the policy. As a result, one can update the parameter vector θθθ

to simultaneously improve and evaluate the current policy estimate. This approach does

not consider policy evaluation and policy improvement as two separate steps. Hence, the

algorithm we will derive in Section 3.1 performs policy evaluation and policy improvement

simultaneously.

For the stationary distribution over state-action pairs, a stationary distribution d(s) over

the state space is assumed. Similar to GTD2 and TDC, d(s) describes the probability of

reaching a state s. Using this distribution we define

dθθθ(s, a) def.= d(s)πθθθ(a|s), DDDθθθ = diag{dθθθ(s, a)}(s,a)∈S×A. (3.3)

Suppose the algorithm runs for t time steps and generates a parameter sequence θθθ1, ..., θθθt and

with that a policy sequence π1, ..., πt. Under this sequence of policies, dt(s), the probability of

visiting a particular state s after exactly t time steps, can be computed. Viewing d(s) as steady

is then equivalent to averaging dt(s) across all time steps. With this new parametrization

of the MSPBE objective, its gradient is re-derived in the next section. Note that this

parametrization of the current policy in terms of the parameter vector θθθ is similar to the

parametrization considered when deriving the Policy Gradient Theorem 3. However, we

consider the MSPBE as an objective and assume the target policy πθθθ to be a differentiable

operator of the value function Qθθθ, similar to the policy improvement operator used for

approximate policy iteration in Algorithm 8.

3.1 Derivation of the PGQ Algorithm
First, the MSPBE is written as the matrix equation

MSPBE(θθθ) =
(
ΨΨΨ>Dθθθ(TθθθQθθθ −Qθθθ)

)>
(ΨΨΨ>DθθθΨΨΨ)−1

(
ΨΨΨ>Dθθθ(TθθθQθθθ −Qθθθ)

)
. (3.4)

CHAPTER 3. OFF-POLICY CONTROL 33

To compute gradients of an equation containing matrices as intermediate results, the partial

derivatives with respect to θθθ(i) are computed first:

∂

∂θθθ(i)MSPBE(θθθ) = ∂

∂θθθ(i)

[(
ΨΨΨ>DDDθθθ(TθθθQθθθ −Qθθθ)

)>
(ΨΨΨ>DDDθθθΨΨΨ)−1

(
ΨΨΨ>DDDθθθ(TθθθQTθθθ −Qθθθ)

)]
= 2 ∂

∂θθθ(i)

[(
ΨΨΨ>DDDθθθ(TθθθQθθθ −Qθθθ)

)>]
(ΨΨΨ>DDDθθθΨΨΨ)−1

(
ΨΨΨ>DDDθθθ(TθθθQθθθ −Qθθθ)

)
+
(
ΨΨΨ>DDDθθθ(TθθθQθθθ −Qθθθ)

)> ∂

∂θθθ(i)
[
(ΨΨΨ>DDDθθθΨΨΨ)−1

] (
ΨΨΨ>DDDθθθ(TθθθQθθθ −Qθθθ)

)
.

(3.5)

The derivative of the inverse feature covariance is

∂

∂θθθ(i)(ΨΨΨ>DDDθθθΨΨΨ)−1 = −(ΨΨΨ>DDDθθθΨΨΨ)−1 ∂

∂θθθ(i)(ΨΨΨ>DDDθθθΨΨΨ)(ΨΨΨ>DDDθθθΨΨΨ)−1

= −(ΨΨΨ>DDDθθθΨΨΨ)−1(ΨΨΨ> ∂D
DDθθθ

∂θθθ(i)ΨΨΨ)(ΨΨΨ>DDDθθθΨΨΨ)−1. (3.6)

Plugging this back into the gradient gives

∂

∂θθθ(i)MSPBE(θθθ)

= 2
(

ΨΨΨ> ∂D
DDθθθ

∂θθθ(i)(TθθθQθθθ −Qθθθ) + ΨΨΨ>DDDθθθ
∂

∂θθθ(i)(TθθθQθθθ −Qθθθ)
)>

(ΨΨΨ>DDDθθθΨΨΨ)−1
(
ΨΨΨ>DDDθθθ(TθθθQθθθ −Qθθθ)

)
−
(
ΨΨΨ>DDDθθθ(TθθθQθθθ −Qθθθ)

)>
(ΨΨΨ>DDDθθθΨΨΨ)−1(ΨΨΨ> ∂D

DDθθθ

∂θθθ(i)ΨΨΨ)(ΨΨΨ>DDDθθθΨΨΨ)−1
(
ΨΨΨ>DDDθθθ(TθθθQθθθ −Qθθθ)

)
.

(3.7)

The partial derivative on the Bellman error is

∂

∂θθθ(i) [TθθθQθθθ −Qθθθ] = ∂

∂θθθ(i) [RRR + γPPP θθθΨΨΨθθθ −ΨΨΨθθθ]

= γ
∂PPP θθθ
∂θθθ(i)ΨΨΨθθθ + γPPP θθθΨΨΨ(·, i)−ΨΨΨ(·, i). (3.8)

CHAPTER 3. OFF-POLICY CONTROL 34

Plugging (3.8) back into the MSPBE gradient gives

∂

∂θθθ(i)MSPBE(θθθ)

= 2
(

ΨΨΨ> ∂D
DDθθθ

∂θθθ(i)(TθθθQθθθ −Qθθθ)

+ ΨΨΨ>DDDθθθ(γ
∂PPP θθθ
∂θθθ(i)ΨΨΨθθθ + γPPP θθθΨΨΨ(·, i)−ΨΨΨ(·, i))

)>
(ΨΨΨ>DDDθθθΨΨΨ)−1

(
ΨΨΨ>DDDθθθ(TθθθQθθθ −Qθθθ)

)
−
(
ΨΨΨ>DDDθθθ(TθθθQθθθ −Qθθθ)

)>
(ΨΨΨ>DDDθθθΨΨΨ)−1(ΨΨΨ> ∂D

DDθθθ

∂θθθ(i)ΨΨΨ)(ΨΨΨ>DDDθθθΨΨΨ)−1
(
ΨΨΨ>DDDθθθ(TθθθQθθθ −Qθθθ)

)

= 2
(

ΨΨΨ> ∂D
DDθθθ

∂θθθ(i)(TθθθQθθθ −Qθθθ)
)>

(ΨΨΨ>DDDθθθΨΨΨ)−1
(
ΨΨΨ>DDDθθθ(TθθθQθθθ −Qθθθ)

)

+ 2
(

ΨΨΨ>DDDθθθ(γ
∂PPP θθθ
∂θθθ(i)ΨΨΨθθθ + γPPP θθθΨΨΨ(·, i)−ΨΨΨ(·, i))

)>
(ΨΨΨ>DDDθθθΨΨΨ)−1

(
ΨΨΨ>DDDθθθ(TθθθQθθθ −Qθθθ)

)
−
(
ΨΨΨ>DDDθθθ(TθθθQθθθ −Qθθθ)

)>
(ΨΨΨ>DDDθθθΨΨΨ)−1(ΨΨΨ> ∂D

DDθθθ

∂θθθ(i)ΨΨΨ)(ΨΨΨ>DDDθθθΨΨΨ)−1
(
ΨΨΨ>DDDθθθ(TθθθQθθθ −Qθθθ)

)
.

(3.9)

Similar to Sutton et al. [2009a] an auxiliary weight vector is defined as

www = (ΨΨΨ>DDDθθθΨΨΨ)−1
(
ΨΨΨ>DDDθθθ(TθθθQθθθ −Qθθθ)

)
= E[ΨΨΨΨΨΨ>]−1E[δΨΨΨ], (3.10)

to rewrite the partial derivative as

1
2

∂

∂θθθ(i)MSPBE(θθθ)

= ΨΨΨ ∂DDDθθθ

∂θθθ(i)(TθθθQθθθ −Qθθθ)>www + ΨΨΨDDDθθθ

(
γ
∂PPP θθθ
∂θθθ(i)ΨΨΨθθθ + γPPP θθθΨΨΨ(·, i)−ΨΨΨ(·, i)

)>
www − 1

2w
ww>ΨΨΨ> ∂D

DDθθθ

∂θθθ(i)ΨΨΨwww.

(3.11)

Let ψψψ = ψ(s, a), ψψψ = ∑
a′ ψ(s′, a′), and δ = r(s, a, s′) + γθθθ>ψψψ − θθθ>ψψψ. The first matrix term

in the derivative is

ΨΨΨ> ∂D
DDθθθ

∂θθθ(i)(TθθθQθθθ −Qθθθ) = ΨΨΨ>diag
{
d(s)∂πθθθ(a|s)

∂θθθ(i)

}
(s,a)∈S×A

(RRR + γPPP θθθQθθθ −Qθθθ)

=
∑
s,a,s′

d(s)∂πθθθ(a|s)
∂θθθ(i) ΨΨΨ>δ

= E
[
∂πθθθ(a|s)/∂θθθ(i)

πθθθ(a|s)
δψψψ>

]
, (3.12)

CHAPTER 3. OFF-POLICY CONTROL 35

where the expectation is over all possible transitions (s, a, s′). Note that δ depends on s′. Let

ψψψ′ = ψ(s′, a′), the second matrix term is

ΨΨΨ>DDDθθθ

(
γ
∂PPP θθθ
∂θθθ(i)ΨΨΨθθθ + γPPP θθθΨΨΨ(·, i)−ΨΨΨ(·, i)

)

= ΨΨΨ>DDDθθθ

γ

∑
s′,a′ p(s1, a1, s

′)∂πθθθ(a′|s′)
∂θθθ(i) θθθ>ψψψ′

...∑
s′,a′ p(sn, am, s′)∂πθθθ(a′|s′)

∂θθθ(i) θθθ>ψψψ′

+ γ

∑
s′,a′ p(s1, a1, s

′)πθθθ(a′|s′)ψψψ′(i)
...∑

s′,a′ p(sn, am, s′)πθθθ(a′|s′)ψψψ′(i)

−ΨΨΨ(·, i)

=
∑
s,a

dθθθ(s, a)ψψψ>
γ∑

s′,a′
p(s, a, s′)∂πθθθ(a

′|s′)
∂θθθ(i) θθθ>ψψψ′ + γ

∑
s′,a′

p(s, a, s′)πθθθ(a′|s′)ψψψ′(i)−ψψψ(i)

= E
[(
γE

[
∂πθθθ(a′|s′)/∂θθθ(i)

πθθθ(a′|s′)
θθθ>ψψψ′

]
+ γE [ψψψ′(i)]−ψψψ(i)

)
ψψψ>
]
, (3.13)

The third term is

www>(ΨΨΨ> ∂D
DDθθθ

∂θθθ(i)ΨΨΨ)www = www>
(∑
s,a

d(s)∂πθθθ(a|s)
∂θθθ(i) ψψψψψψ>

)
www = www>E

 ∂πθθθ(a|s)
∂θθθ(i)

πθθθ(a|s)
ψψψψψψ>

www. (3.14)

Using ∇πθθθ

πθθθ
= ∇θθθπθθθ(a|s)

πθθθ(a|s) and ∇π′
θθθ

π′
θθθ

= ∇θθθπθθθ(a′|s′)
πθθθ(a′|s′) as a shorthand and assembling the MSPBE

gradient gives

− 1
2∇θθθMSPBE(θθθ)

= −
(
E
[∇πθθθ
πθθθ

δψψψ′>
]

+ E
[(
γE

[
∇π′θθθ
π′θθθ

θθθ>ψψψ′
]

+ γE [ψψψ′]−ψψψ
)
ψψψ>
])
www + 1

2w
ww>E

[∇πθθθ
πθθθ

ψψψψψψ>
]
www

= E
[
ψψψψψψ>

]
E
[
ψψψψψψ>

]−1
E [δψψψ]︸ ︷︷ ︸

=www

−γE
[
ψψψ′ψψψ>

]
www − E

[∇πθθθ
πθθθ

δψψψ>
]
www − γE

[
∇π′θθθ
π′θθθ

θθθ>ψψψ′ψψψ>
]
www

+ 1
2w
ww>E

[∇πθθθ
πθθθ

ψψψψψψ>
]
www

= E [δψψψ]− γE
[
ψψψ′ψψψ>

]
www − E

[∇πθθθ
πθθθ

δψψψ>
]
www − γE

[
∇π′θθθ
π′θθθ

θθθ>ψψψ′ψψψ>
]
www + 1

2w
ww>E

[∇πθθθ
πθθθ

ψψψψψψ>
]
www.

(3.15)

3.1.1 Off-Policy Conversion

The expectations in (3.15) use the target policy πθθθ to compute the probabilities of selecting

an action. In off-policy training, the transitions (s, a, s′) are generated using a different

behavior policy b. To be able to derive an off-policy control algorithm generating transitions

CHAPTER 3. OFF-POLICY CONTROL 36

using the behavior policy b, we need to re-express the expectations in terms of b. Define

ρ
def.= πθθθ(a|s)

b(a|s) , ρ
∇ def.= ∇θθθπθθθ(a|s)

b(a|s) , and ρ′∇ def.= ∇θθθπθθθ(a′|s′)
b(a′|s′) ,

where ρ is the usual importance sampling ratio. This notation allows us to rewrite (3.15)

and (3.10) as

−1
2∇θθθMSPBE(θθθ)

= Eb [ρδψψψ]− γEb
[
ρψψψ′ψψψ>

]
www − Eb

[
ρ∇δψψψ>

]
www − γEb

[
ρ′∇θθθ>ψψψ′ψψψ>

]
www + 1

2w
ww>Eb

[
ρ∇ψψψψψψ>

]
www,

(3.16)

www = Eb[ρψψψψψψ>]−1Eb[ρδψψψ].

The subscript b denotes that the expectations range over all possible transitions where actions

are selected with respect to the behaviour policy b.

3.1.2 Sampling the Gradient

To obtain an incremental control algorithm, we derive a stochastic gradient descent method

sampling ∇θθθMSPBE(θθθ). Since the auxiliary weight vectorwww must be estimated independently,

the same weight doubling trick presented by Sutton et al. [2009b] is used and the wwwt estimate

is updated with

wwwt+1 = wwwt + βtρ(δ −ψψψ>wwwt)ψψψ, (3.17)

where δ is the TD error as defined before. The expectations of (3.16) are sampled by the

update rule

θθθt+1 = θθθt+αt
[
ρδψψψ−ργψψψ′ψψψ>wwwt

]
−αt

[
ρ∇δψψψ>wwwt + ρ′∇γ(θ>ψψψ′)(ψψψ>wwwt)−

1
2ρ
∇(www>t ψψψ)2

]
. (3.18)

This update rule is quite intuitive. It contains the standard GQ(0) update terms minus the

underlined correction term in the direction of the policy gradient.

We call the resulting algorithm Policy-Gradient Q-learning (PGQ). A full listing of PGQ

is shown in in Algorithm 9. As in all gradient-based TD algorithms, the complexity per

time step is linear in the number of basis functions. Similar to Expected SARSA, which we

described in Section 2.2, (2.26), we do not sample the action selected by the agent at the

CHAPTER 3. OFF-POLICY CONTROL 37

next state s′. Instead we calculate this expectation analytically by computing the expected

next state feature vectors ψψψ and ψψψ∇ over all possible actions before updating the parameter

vector θθθ.

Algorithm 9 PGQ (Policy Gradient Q-learning)
Input: An MDP 〈S,A, p, r, γ〉, a target policy πθθθ, a behaviour policy b, a learning rate
α ∈ (0, 1], a start state sstart.
Initialize θθθ = 0, www = 0.
s← sstart, t← 1
repeat
Sample b ∼ πθθθ(·|s)
Take action a, observe reward r and next state s′
ρ← πθθθ(a|s)

b(a|s) , ρ
∇ ← ∇θθθπθθθ(a|s)

b(a|s)

ψψψ ← ψ(s, a), ψψψ ← ∑
b πθθθ(b|s′)ψ(s′, b), ψψψ∇ ← ∑

a′ ∇θθθπθθθ(a′|s′)θθθ>ψψψ(s′, a′)
δ ← r + γθθθ>ψψψ − θθθ>ψψψ
θθθ ← θθθ + αt

[
ρδψψψ − γρψψψ(ψψψ>www)− ρ∇δ(ψψψ>www)− γψψψ∇(ψψψ>www) + 1

2ρ
∇(www>ψψψ)2

]
www ← www + βtρ(δ −ψψψ>www)ψψψ
s← s′, t← t+ 1

until state s is terminal

4
Experiments

This chapter presents empirical results comparing the PGQ algorithm to Q-learning and GQ

in three standard off-policy control domains: Baird’s counterexample, Mountain Car, and

Acrobot. Actions are always selected according to a Boltzmann behaviour policy and the

GQ and PGQ algorithms both use a Boltzmann target policy. All experiments were repeated

with different learning settings and the best performing learning rate setting was chosen for

each algorithm and control domain independently.

4.1 Baird Counter Example
The first set of experiments is on the ”star” Baird counter example Baird [1995] and compares

PGQ to Q-learning and GQ. For this 7 state version, divergence of Q-learning is monotonic

and GQ is known to converge [Maei et al., 2010]. The parameter vector θθθ corresponding

to the action that transitions to the 7th centre state is initialized with (1, 1, 1, 1, 1, 1, 1, 10)

and the remaining parameter entries are initialized with 1. The discount factor is set to

γ = 0.99. These experiments differ from Maei et al. [2010] in that the control or target

policies are not fixed but use Boltzmann action selection distributions computed directly

from the action-value function. Updating is done with dynamic programming sweeps using a

uniform stationary distribution d(s), similar to Maei et al..

Figure 4.1 compares the MSPBE and the maximum norm of the QQQ vector for all state-

action pairs for all three algorithms. In the Baird counter example, the rewards are always

zero; therefore an optimal action-value estimate is zero and ||QQQ||∞ should converge to zero. As

38

CHAPTER 4. EXPERIMENTS 39

0 100 200 300 400 500

Update

0

500

1000

1500

2000

2500

3000
M

S
P
B

E
Q

GQ

PGQ

0 100 200 300 400 500

Update

0

5

10

15

20

25

30

||QQ Q
|| ∞

Q
GQ
PGQ

Figure 4.1: MSPBE and maximum of all state-action values for off-policy control averaged
over 20 runs. The behaviour policy temperature is τ = 10. The temperature of the target
policy used by GQ and PGQ is τ = 0.2. Q-learning uses a learning rate α = 0.01 while GQ
and PGQ both use α = 0.1 and β = 0.1.

shown before, Q-learning diverges while GQ and PGQ both converge to a low error solution.

As can be seen, PGQ finds a solution with lower MSPBE and with lower action-values than

the solution found by GQ. These results suggest that PGQ makes more efficient updates and

finds a higher quality solution than GQ. However, the updates for both GQ and PGQ still

flatten after approximately 150 updates. Further, the plot does not suggest that the action

values converge to zero.

4.2 Mountain Car
In the Mountain car task [Sutton and Barto, 1998] the agent drives an underpowered car

and the goal is to drive the car out of a valley and up a hill in as few time steps as possible.

The action space consists of three actions: accelerate forward, backward, or coast. The state

space consists of the position of the car and its velocity. The basis function used for this

task computes a bit-vector tiling the two dimensional state space into a 18× 18 grid. For

each of the three actions, a separate 18 × 18 grid is used. Figure 4.2 shows the average

episode length and the average infinity and L1 norm the vector θθθ for each episode under

off-policy training using Boltzmann policies. The target temperature for GQ and PGQ

is set to τ = 0.5 and the behaviour temperature to τ = 1.1 for all algorithms. Since the

CHAPTER 4. EXPERIMENTS 40

basis function generates a vector with one entry set to one and all others set to zero, the in

magnitude largest state-action value equals ||θθθ||∞ and ||θθθ||1 is equal to the sum of all absolute

state-action values. First, one can see that the average episode length of GQ increases

after approximately 50 episodes, i.e. GQ does not seem to converge to a good solution and

instead finds a policy whose performance becomes worse as the number of episodes increases.

However, Q-learning and PGQ both find a policy that solves the task faster with Q-learning

performing significantly better than PGQ after approximately 150 episodes. The plot of ||θθθ||1
reveals that all three algorithms seem to converge to different solutions. Q-learning produces

a higher average ||θθθ||∞ and ||θθθ||1 than GQ and PGQ which can be contributed to the fact

that a higher learning rate of α = 0.5 is used.

4.3 Acrobot
The Acrobot task [Sutton and Barto, 1998] consists of a two-link under-actuated robot arm

mounted at the top joint. Torque can be applied by the agent in two directions on the

middle-joint, or no torque can be applied by the agent. Hence, the action space contains

three actions and the state is described by four continuous variables, the angle and angular

velocity of the top and middle joint respectively. The basis function is a bit vector tiling the

four-dimensional state space into 12 tiles along the two angular positions and 14 tiles along

the two angular velocities. Similar to the Mountain car experiment, a separate grid is used

for each of the actions. The goal of the agent is to learn how to apply torque to the middle

joint in order to move the tip of the arm to a certain height in as few time steps as possible.

For this task a control temperature of τ = 1.1 and a target temperature of τ = 0.5 is used.

Each episode has a maximum length of 1500 iterations. The experiment is repeated 20 times

with each algorithm.

Figure 4.3 compares the average episode length and the average infinity and L1 norm of

the vector θθθ among Q-learning, GQ, and PGQ. Similarly to the Mountain car experiments,

the basis function only generates a bit vector with only one entry set to one and the others

to zero, so computing ||θθθ||∞ corresponds to finding the in magnitude largest state-action

value. The plot of ||θθθ||∞ and ||θθθ||1 in Figure 4.3 show that all three algorithms seem to find

CHAPTER 4. EXPERIMENTS 41

0 50 100 150 200

Episode

0

2000

4000

6000

8000

10000

12000

E
pi

so
de

Le
ng

th

Q GQ PGQ

0 50 100 150 200

Episode

0

20

40

60

80

100

120

140

||θθ θ
|| ∞

Q GQ PGQ

0 50 100 150 200

Episode

0

10000

20000

30000

40000

||θθ θ
|| 1

Q GQ PGQ

Figure 4.2: Episode length, infinite norm, and L1 norm of the value function parameter θθθ on
the Mountain car task. Both plots show the same dataset. Each experiment is repeated 20
times. Q-learning uses a learning rate α = 0.5 while GQ and PGQ use learning rates α = 0.1
and β = 0.005.

CHAPTER 4. EXPERIMENTS 42

0 500 1000 1500 2000

Episode

0

500

1000

1500

E
pi

so
de

Le
ng

th

Q GQ PGQ

0 500 1000 1500 2000

Episode

0

20

40

60

80

100

120

||θθ θ
|| ∞

Q GQ PGQ

0 500 1000 1500 2000

Episode

0

20000

40000

60000

80000

100000

120000

||θθ θ
|| 1

Q GQ PGQ

Figure 4.3: Episode length. infinity norm, and L1 norm of the value function parameter θθθ on
the Acrobot task. Both plots show data from the same experiments and the curves show the
averages and standard deviations of 20 repeats. Q-learning uses a learning rate of α = 0.2.
GQ and PGQ both use α = 0.1 and β = 0.005.

CHAPTER 4. EXPERIMENTS 43

a different solution. In fact, the action values of Q-learning seem to grow linearly without

bound as the number of episodes increases. However, Q-learning finds a policy that only

performs slightly worse than PGQ in terms of episode length. In comparison to GQ and

PGQ, a slow down in the growth rate of the state-action values cannot be observed. PGQ

seems to perform best as its average episode length is lower than the average episode of

Q-learning and GQ. The average episode length of GQ increases after around 200 episodes

which indicates the GQ does not seem to learn an efficient policy. These results highlight the

difference between the three algorithms and show that under off-policy training on complex

control problems the PGQ algorithm outperforms both Q-learning and GQ.

5
Conclusion and Future Work

5.1 Conclusion
We presented a new gradient based TD-learning algorithm, called PGQ, that uses policy

gradients in order to account for changes in the probability with which transitions are sampled.

The resulting algorithm is similar to GQ(0) but includes a correction term in the direction of

the gradient of the target policy. Our analysis in Chapter 3 accounts for the dependency of

the Markov chain induced by a particular policy on the value function parameter vector θθθ

through the target policy. Finding an optimal control policy is equivalent to finding the policy

which induces a Markov chain in the MDP that generates the highest cumulative return. By

accounting for the interaction between the value function estimate and the generated Markov

chain, our algorithm accounts directly for changes in the probabilities with which actions are

sampled. In contrast, existing control algorithms that learn incrementally, such as Q-learning,

SARSA, and GQ, do not account for changes in the probabilities of selecting an action. As a

result, these methods drift in the space of Markov chains generated by all possible control

policies. In fact, SARSA is known to only converge to a specific region in which the value

function estimate may oscillate indefinitely [Gordon, 2001, 1996]. Our approach is to view

the policy to be a direct operator of the current value function estimate, similar to the

improvement operator in Approximate Policy Iteration [Perkins and Precup, 2003]. However,

PGQ performs both policy evaluation and policy improvement simultaneously and does

not consider them as two separate steps. While we approach the gradient derivation of the

MSPBE objective similar to the gradient derivation of the policy gradient algorithm presented

44

CHAPTER 5. CONCLUSION AND FUTURE WORK 45

by Sutton et al. [2000], we do not consider the parameters of the policy as a separate vector.

Instead, the policy is a function of the value function, i.e. both policy and value function

are parametrized by a common parameter vector θθθ. As a result, a compatibility condition

matching the parameters of the policy and value function is not necessary, in contrast to the

work presented by Sutton et al. [2000]. Consequently, we do not have to solve a system of

equations to find a good approximation of the value function for the current policy estimate.

Our method accomplishes both simultaneously.

The experimental results in Chapter 4 indicate that PGQ performs more accurate updates

than GQ(0) does under off-policy training because PGQ finds a significantly more efficient

policy than GQ(0) does. PGQ is also the only algorithm that seems to remain stable on all

tested domains since its action-value estimates always seem to remain bounded. Especially

on the Acrobot control domain, the most complex control problem tested, PGQ outperforms

both GQ(0) and Q-learning. These results highlight that our more direct approach for

searching the space of Markov chains generated by all possible policies results in better

performance. Further, the empirical results on the Baird Counter Example in Chapter 4

indicate that PGQ also converges under off-policy control with linear function approximation.

The GQ(0) algorithm also seems to converge on the Baird Counter example in the control

case. However, a convergence proof for both methods for the control case is still unknown.

5.2 Future Work
Further analyzing PGQ in order to proof convergence in the off-policy control case would be a

natrual continuation of this research. The ODE method [Borkar and Meyn, 1999], which was

used to proof convergence of TDC, does not directly extend to the control case as this proof

technique assumes transition data to be i.i.d. which is not the case in the control context.

One may be able to leverage ideas from the convergence proof of SARSA [Singh et al., 2000]

or the Approximate Policy Iteration algorithm [Perkins and Precup, 2003]. However, these

proofs only consider the on-policy control case.

Another interesting continuation of this research would be to extend this method to the

non-linear function approximation case. The presented approach is tied to linear function

CHAPTER 5. CONCLUSION AND FUTURE WORK 46

approximation solely through the use of the projection operator Π in the MSPBE objective.

Intuitively, this operator performs a fit of the linear objective function to minimize the

TD-errors at every state-action pair, similar to linear regression. Maei et al. [2009] present a

gradient based TD algorithm which uses a projection operator for non-linear value functions

that are Lipschitz continuous. One may be able to merge their results with the approach

presented in this thesis to derive a control algorithm that can be used with non-linear function

approximation.

Investigating how to account for the interaction between the stationary distribution

dt(s) and changes in the parameter vector θθθ may give rise to a better off-policy control

algorithm. While it is valid to assume the overall stationary distribution d(s) to be steady,

being able to account for changes in the distribution dt(s) on a per time step basis would

allow the algorithm to model more closely the process with which transitions are generated.

Consequently, the algorithm may use the transition data more efficiently and converge faster.

Bibliography

Leemon Baird. Residual Algorithms: Reinforcement Learning with Function Approximation.
In Proceedings of the Twelfth International Conference on Machine Learning, pages 30–37.
Morgan Kaufmann, 1995.

Dimitri P. Bertsekas. Neuro-Dynamic Programming. Athena Scientific, 1 edition, May 1
1996.

Dimitri P. Bertsekas. Approximate policy iteration: A survey and some new methods. Journal
of Control Theory and Applications, pages 310–335, June 2011.

V. S. Borkar and S.P. Meyn. The o.d.e. method for convergence of stochastic approximation
and reinforcement learning. SIAM J. Control Optim, 38:447–469, 1999.

Vivek S. Borkar. Stochastic approximation with two time scales. Systems & Control Letters,
29(5):291 – 294, 1997.

Thomas Degris, Martha White, and Richard Sutton. Off-Policy Actor-Critic. In John
Langford and Joelle Pineau, editors, Proceedings of the 29th International Conference on
Machine Learning (ICML-12), ICML ’12, pages 457–464, New York, NY, USA, July 2012.
Omnipress.

Geoffrey J. Gordon. Chattering in SARSA(λ) - A CMU Learning Lab Internal Report.
Technical report, Carnegie Mellon University, 1996.

Geoffrey J. Gordon. Reinforcement Learning with Function Approximation Converges to
a Region. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural
Information Processing Systems, pages 1040–1046. The MIT Press, 2001.

Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. Convergence of stochastic iterative
dynamic programming algorithms. In J. D. Cowan, G. Tesauro, and J. Alspector, editors,
Advances in Neural Information Processing Systems 6, pages 703–710. Morgan-Kaufmann,
1994.

H. R. Maei and R. S. Sutton. GQ(λ): A general gradient algorithm for temporal-difference
prediction learning with eligibility traces. In Proceedings of the Third Conference on

47

BIBLIOGRAPHY 48

Artificial General Intelligence, Advances in Intelligent Systems Research. Atlantis Press,
March 2010.

Hamid R. Maei, Csaba Szepesvári, Shalabh Bhatnagar, Doina Precup, David Silver, and
Richard S. Sutton. Convergent temporal-difference learning with arbitrary smooth function
approximation. In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and
A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1204–
1212. Curran Associates, Inc., 2009.

Hamid Reza Maei, Csaba Szepesvari, Shalabh Bhatnagar, and Richard S. Sutton. Toward
Off-Policy Learning Control with Function Approximation. In Johannes Fürnkranz and
Thorsten Joachims, editors, Proceedings of the 27th International Conference on Machine
Learning (ICML-10), pages 719–726, Haifa, Israel, June 2010. Omnipress.

Andrew Ng and Stuart Russell. Algorithms for Inverse Reinforcement Learning. In Jorge Pinho
De Sousa, editor, Proceedings of the Seventeenth International Conference on Machine
Learning, pages 663–670. Morgan Kaufmann Publishers Inc., 2000.

Theodore J. Perkins and Doina Precup. A convergent form of approximate policy iteration.
In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information
Processing Systems 15, pages 1627–1634. MIT Press, 2003.

Doina Precup, Richard S. Sutton, and Sanjoy Dasgupta. Off-policy temporal difference
learning with function approximation. In Proceedings of the Eighteenth International
Conference on Machine Learning, ICML ’01, pages 417–424, San Francisco, CA, USA,
2001. Morgan Kaufmann Publishers Inc.

Gavin Adrian Rummery. Problem Solving with Reinforcment Learning. PhD thesis, Cambridge
University Engineering Department, Trumpington Street, Cambridge, CD2 1PZ, England,
1995.

Satinder Singh, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesvári. Convergence
results for single-step on-policy reinforcement-learning algorithms. In Machine Learning,
volume 39, pages 287–308. Kluwer Academic Publishers, February 2000.

Richard Sutton, Hamid Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba
Szepesvari, and Eric Wiewiora. Fast Gradient-Descent Methods for Temporal-Difference
Learning with Linear Function Approximation. In Léon Bottou and Michael Littman,
editors, Proceedings of the 26th International Conference on Machine Learning, pages
993–1000, Montreal, June 2009a. Omnipress.

Richard S. Sutton. Learning to Predict by the Methods of Temporal Differences. Machine
Learning, 3(1):9–44, August 1988.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A
Bradford Book. MIT Press, Cambridge, MA, 1 edition, 1998.

BIBLIOGRAPHY 49

Richard S Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy
Gradient Methods for Reinforcement Learning with Function Approximation. In S. A.
Solla, T. K. Leen, and K. Müller, editors, Advances in Neural Information Processing
Systems 12, pages 1057–1063. MIT Press, 2000.

Richard S Sutton, Hamid R. Maei, and Csaba Szepesvári. A Convergent O(n) Temporal-
difference Algorithm for Off-policy Learning with Linear Function Approximation. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Informa-
tion Processing Systems 21, pages 1609–1616. Curran Associates, Inc., 2009b.

Philip Thomas. Bias in natural actor-critic algorithms. In Tony Jebara and Eric P. Xing,
editors, Proceedings of the 31st International Conference on Machine Learning (ICML-14),
pages 441–448. JMLR Workshop and Conference Proceedings, 2014.

Christopher J.C.H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):279–292,
May 1992.

Christopher John Cornish Hallaby Watkins. Learning from Delayed Rewards. PhD thesis,
King’s College, Cambridge, UK, May 1989.

	Contents
	1 Introduction
	1.1 Finding Policies with a Known Model
	1.2 Learning from Temporal Differences
	1.3 Directly Maximizing Return
	1.4 Contributions

	2 Reinforcement Learning
	2.1 Markov Decision Processes
	2.1.1 Value Functions: Quantifying the Quality of a Behaviour
	2.1.2 Vector and Function Notation

	2.2 Temporal Difference Learning
	2.2.1 Function Approximation

	2.3 Off-Policy Learning
	2.3.1 Importance Sampling
	2.3.2 Off-policy Temporal Difference Learning

	2.4 Gradient Based TD Methods
	2.4.1 Derivation of TDC
	2.4.2 Gradient Based Q-learning

	2.5 Policy Iteration Methods
	2.5.1 Iterative Policy Evaluation
	2.5.2 Policy Iteration
	2.5.3 Approximate Policy Iteration

	2.6 Policy Gradient Methods

	3 Off-Policy Control
	3.1 Derivation of the PGQ Algorithm
	3.1.1 Off-Policy Conversion
	3.1.2 Sampling the Gradient

	4 Experiments
	4.1 Baird Counter Example
	4.2 Mountain Car
	4.3 Acrobot

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work

	Bibliography

