
Transfer learning using successor state features

Lucas Lehnert

Joint work with Stefanie Tellex and Michael L. Littman

Brown University



Reinforcement Learning

This framework is called an MDP 𝑀 = 𝒮,𝒜, 𝑝, 𝑟, 𝛾 .
The agent selects actions according to a policy 𝜋: 𝒮 → 𝒜.

Agent World

Action 𝑎𝑡 = 𝜋(𝑠𝑡)

State 𝑠𝑡+1 ∼ 𝑝 𝑠𝑡, 𝑎𝑡,⋅
Reward 𝑟𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡)



Value Functions

Say we have a trajectory:
𝜋 𝑠𝑡 = 𝑎𝑡

𝑠𝑡 𝑠𝑡+1
𝜏

𝑄𝜋 𝑠𝑡, 𝑎𝑡

The discount factor 𝛾 ∈ [0,1) favours immediate rewards.

= 𝔼𝜋 𝑟 𝑠𝑡, 𝑎𝑡 + 𝛾𝑟 𝑠𝑡+1, 𝑎𝑡+1 + 𝛾2𝑟 𝑠𝑡+2, 𝑎𝑡+2 + ⋯



Value Functions

Q-functions encode information about
1. which rewards the agent receives, and
2. which next states the agent sees and in which order.



Using Successor Features for Transfer

?

?

Goal: Learn a feature representation so that 
we can adapt quickly to a new reward 
function.

Example: Navigating between different goal 
locations. The goal location (reward 
function) might change.

Problem: Say we have a set of MDPs where only 
the reward function changes:

{𝑀𝑖 = 𝒮,𝒜, 𝑝, 𝑟𝑖, 𝛾 }



Successor Features (SF) [Baretto et al., 2016]

Every state-action pair has a feature 𝝓𝑠𝑎.
▪ These features are used to predict rewards: 𝝓𝑠𝑎

𝑇 𝒘 ≈ 𝑟(𝑠, 𝑎).

Say we have a trajectory:
𝜋 𝑠𝑡 = 𝑎𝑡

𝝓𝑠𝑡𝑎𝑡 𝝓𝑠𝑡+1𝑎𝑡+1

𝜏

𝝍𝑠𝑡𝑎𝑡
𝜋 = 𝔼𝜋 𝝓𝑠𝑡𝑎𝑡 + 𝛾𝝓𝑠𝑡+1𝑎𝑡+1 + 𝛾2𝝓𝑠𝑡+2𝑎𝑡+2 + 𝛾3𝝓𝑠𝑡+3𝑎𝑡+3 + ⋯

Successor Features:

https://arxiv.org/abs/1606.05312


Successor Features (SF) [Baretto et al., 2016]

Every state-action pair has a feature 𝝓𝑠𝑎.
▪ These features are used to predict rewards: 𝝓𝑠𝑎

𝑇 𝒘 ≈ 𝑟(𝑠, 𝑎).

Say we have a trajectory:
𝜋 𝑠𝑡 = 𝑎𝑡

𝝓𝑠𝑡𝑎𝑡 𝝍𝑠𝑡+1𝑎𝑡+1

𝜏

𝝍𝑠𝑡𝑎𝑡
𝜋 = 𝔼𝜋 𝝓𝑠𝑡𝑎𝑡 + 𝛾𝝍𝑠𝑡+1𝑎𝑡+1

𝝅

Successor Features:

The same trick we use for value functions.

https://arxiv.org/abs/1606.05312


Next state prediction Reward prediction

Successor Features (SF) [Baretto et al., 2016]

Reuse reward model 
to estimate Q-values

Theorem: Q-values can be computed using 
1. the reward model 𝑟(𝑠, 𝑎) ≈ 𝝓𝑠𝑎

𝑇 𝒘
2. the Successor Features 𝝍𝑠𝑎

𝜋

as
𝑄𝜋 𝑠, 𝑎 = 𝝍𝑠𝑎

𝜋 𝑇𝒘

https://arxiv.org/abs/1606.05312


The Fitted Successor Feature Algorithm

Similar to Fitted Q-iteration, we estimate a SF target:

𝒚𝑠,𝑎,𝑠′ = ൝
𝝓𝑠,𝑎

𝝓𝑠,𝑎 + 𝛾𝔼𝑎′ 𝝍𝑠′,𝑎′
if 𝑠′ is terminal
otherwise

The SFs 𝝍 are then fitted against the target 𝒚𝑠,𝑎,𝑠′ with the loss:
ℒSF 𝝍 = 𝔼𝑠,𝑎,𝑠′ 𝝍𝑠,𝑎 − 𝒚𝑠,𝑎,𝑠′

2

We use Adagrad (as implemented in Tensorflow) to minimize ℒSF with respect to 
the parametrization of 𝝍.
▪ Gradient update using every 100 transitions.

https://www.tensorflow.org/api_docs/python/tf/train/AdagradOptimizer


The Fitted Successor Feature Algorithm

Reward Model: 𝑟(𝑠, 𝑎) ≈ 𝝓𝑠,𝑎
𝑇 𝒘

The function 𝝓 tabulates the state-action space.

Successor Feature Model: 𝝍𝑠,𝑎 = 𝚿𝝓𝑠,𝑎
The matrix 𝚿 is of size 𝒮 ×𝒜 × 𝒮 ×𝒜 .

For finite MDPs, the true reward model and successor features can be captured.

Although these models can be easily extended to use function approximation.



Grid World Navigation

+1

Robot has to navigate in on a 10-by-10 grid.

When robot reaches a goal it receives +1 reward.

Robot can move up, down, left, and right, and it 
might slip with small probability.



Single Task Navigation

Number of attempts 
to navigate.

The agent is 
constrained to select 
an random action with 
probability 0.3
(to ensure exploration).



+1

+1

Multi Task Navigation: Slight Reward Changes

Same 10-by-10 grid world scenario as before.

The goal location is only moved by one cell.

The optimal policy changes only slightly.

Use an 𝜀-greedy policy with 𝜀 = 0.3.

+1



+1

+1

Multi Task Navigation: Slight Reward Changes

+1

Same 10-by-10 grid world scenario as before.

The goal location is only moved by one cell.

The optimal policy changes only slightly.

Use an 𝜀-greedy policy with 𝜀 = 0.3.



+1+1

Multi Task Navigation: Slight Reward Changes

Same 10-by-10 grid world scenario as before.

The goal location is only moved by one cell.

The optimal policy changes only slightly.

Use an 𝜀-greedy policy with 𝜀 = 0.3.

+1



SF Boost Transfer Performance

We change the goal location by one cell every 400 episodes.

If SFs are not transferred, then the performance degrades and becomes similar to 
Fitted Q-iteration.

Different Reset Strategies for Fitted SF:



Multi Task Navigation: Significant Reward Changes

Every 100 episodes, change goal location to 
another corner, then repeat.

+1



Multi Task Navigation: Significant Reward Changes

Every 100 episodes, change goal location to 
another corner, then repeat.

+1+1



Multi Task Navigation: Significant Reward Changes

Every 100 episodes, change goal location to 
another corner, then repeat.

+1+1

+1



Multi Task Navigation: Significant Reward Changes

Every 100 episodes, change goal location to 
another corner, then repeat.

+1+1

+1 +1



Multi Task Navigation: Significant Reward Changes

Every 100 episodes, change goal location to 
another corner, then repeat.

+1

+1 +1

+1



Multi Task Navigation: Significant Reward Changes

The significant reward 
function change 
requires to re-explore 
the environment.

The 𝜀-greedy policy was 
changed from 
𝜀 = 1.0 down to 0.1. 



Multi Task Navigation: Significant Reward Changes

Fitted Q-
iteration

Fitted SF Welch’s t-test p-
value 

Average episode 
length 

99.46 ± 10.43 34.50 ± 2.17 1.90 · 10−17

The probability of accidentally 
seeing different performance 
between the two methods.



Multi Task Navigation: Significant Reward Changes

Reward Prediction LossSuccessor Feature Loss
How badly do the feature satisfy the learning target?

Oscillations are expected, because we 
keep changing the reward model.

The SF are adjusted for every task!
Good exploration (annealing 𝜀) helps.



≠

Example: Transfer with SF

Task 1: Policy 𝜋𝑎𝑎, select action 𝑎, then 𝑎 again:
𝝍0𝑎
𝜋𝑎𝑎 = 𝝓0𝑎 + 𝛾𝝓1𝑎 + 𝔼𝜋𝑎𝑎 𝝍2𝑎

𝜋𝑎𝑎

𝝓3

𝝓2

𝝓1𝝓0

𝑎, 𝑟 = 0
𝑎, 𝑟 = 1

𝑏, 𝑟 = 0

𝑎, 𝑟 = 0

𝑎, 𝑟 = 0

Task 2: Policy 𝜋𝑎𝑏, select action 𝑎, then 𝑏 again:
𝝍0𝑎
𝜋𝑎𝑏 = 𝝓0𝑎 + 𝛾𝝓1𝑏 + 𝔼𝜋𝑎𝑏 𝝍3𝑎

𝜋𝑎𝑏

𝝓3

𝝓2

𝝓1𝝓0

𝑎, 𝑟 = 0
𝑎, 𝑟 = 0

𝑏, 𝑟 = 1

𝑎, 𝑟 = 0

𝑎, 𝑟 = 0



One task’s Successor Feature representation has to be re-learned for another.
▪ The Successor Feature representation only initializes policy search.

However, we have shown that Successor Features can significantly improve 
transfer in RL across tasks with changing reward structure.

Conclusion



Thank you.

Related Paper:
Lucas Lehnert, Stefanie Tellex, and Michael L. Littman
Advantages and Limitations of using Successor Features for Transfer in 
Reinforcement Learning
Lifelong Learning: A Reinforcement Learning Approach Workshop @ICML, Sydney, 
Australia, 2017 [arXiv] 

https://drive.google.com/file/d/0B9dqzboiV5u-dUlLSmRxTzdhXzQ/view
https://arxiv.org/pdf/1708.00102.pdf

