Transfer learning using successor state features

Lucas Lehnert

Joint work with Stefanie Tellex and Michael L. Littman

Brown University

Reinforcement Learning

This framework is called an MDP $M = \langle S, A, p, r, \gamma \rangle$. The agent selects actions according to a policy $\pi: S \to A$.

Value Functions

The **discount factor** $\gamma \in [0,1)$ favours immediate rewards.

Value Functions

Q-functions encode information about

- 1. which rewards the agent receives, and
- 2. which next states the agent sees and in which order.

Using Successor Features for Transfer

- **Problem:** Say we have a set of MDPs where only the reward function changes: $\{M_i = \langle S, A, p, r_i, \gamma \rangle\}$
- **Example:** Navigating between different goal locations. The goal location (reward function) might change.
- **Goal:** Learn a feature representation so that we can adapt quickly to a new reward function.

Successor Features (SF) [Baretto et al., 2016]

Every state-action pair has a feature ϕ_{sa} .

• These features are used to predict rewards: $\phi_{sa}^T w \approx r(s, a)$.

Successor Features (SF) [Baretto et al., 2016]

Every state-action pair has a feature ϕ_{sa} .

• These features are used to predict rewards: $\phi_{sa}^T w \approx r(s, a)$.

Successor Features (SF) [Baretto et al., 2016]

The Fitted Successor Feature Algorithm

Similar to Fitted Q-iteration, we estimate a SF target:

$$\boldsymbol{y}_{s,a,s'} = \begin{cases} \boldsymbol{\phi}_{s,a} & \text{if } s' \text{ is terminal} \\ \boldsymbol{\phi}_{s,a} + \gamma \mathbb{E}_{a'} [\boldsymbol{\psi}_{s',a'}] & \text{otherwise} \end{cases}$$

The SFs $\boldsymbol{\psi}$ are then fitted against the target $\boldsymbol{y}_{s,a,s'}$ with the loss: $\mathcal{L}_{SF}(\boldsymbol{\psi}) = \mathbb{E}_{s,a,s'} \left[\left\| \boldsymbol{\psi}_{s,a} - \boldsymbol{y}_{s,a,s'} \right\|^2 \right]$

We use Adagrad (as implemented in <u>Tensorflow</u>) to minimize \mathcal{L}_{SF} with respect to the parametrization of ψ .

Gradient update using every 100 transitions.

The Fitted Successor Feature Algorithm

Reward Model:

 $r(s, a) \approx \boldsymbol{\phi}_{s,a}^T \boldsymbol{w}$ The function $\boldsymbol{\phi}$ tabulates the state-action space.

Successor Feature Model:

 $\boldsymbol{\psi}_{s,a} = \boldsymbol{\Psi} \boldsymbol{\phi}_{s,a}$ The matrix $\boldsymbol{\Psi}$ is of size $|S \times \mathcal{A}| \times |S \times \mathcal{A}|$.

For finite MDPs, the true reward model and successor features can be captured.

Although these models can be easily extended to use function approximation.

Grid World Navigation

Robot has to navigate in on a 10-by-10 grid.

When robot reaches a goal it receives +1 reward.

Robot can move up, down, left, and right, and it might slip with small probability.

Single Task Navigation

Same 10-by-10 grid world scenario as before.

The goal location is only moved by one cell.

The optimal policy changes only slightly.

Use an ε -greedy policy with $\varepsilon = 0.3$.

Same 10-by-10 grid world scenario as before.

The goal location is only moved by one cell.

The optimal policy changes only slightly.

Use an ε -greedy policy with $\varepsilon = 0.3$.

Same 10-by-10 grid world scenario as before.

The goal location is only moved by one cell.

The optimal policy changes only slightly.

Use an ε -greedy policy with $\varepsilon = 0.3$.

SF Boost Transfer Performance

We change the goal location by one cell every 400 episodes.

Different Reset Strategies for Fitted SF:

If SFs are not transferred, then the performance degrades and becomes similar to Fitted Q-iteration.

The significant reward function change requires to re-explore the environment.

The ε -greedy policy was changed from

 $\varepsilon = 1.0$ down to 0.1.

	Fitted Q- iteration	Fitted SF	Welch's t-test <i>p</i> - value
Average episode length	99.46 ± 10.43	34.50 ± 2.17	1.90 · 10 ⁻¹⁷

The probability of accidentally seeing different performance between the two methods.

Successor Feature Loss

How badly do the feature satisfy the learning target?

The SF are adjusted for every task! Good exploration (annealing ε) helps.

Oscillations are expected, because we keep changing the reward model.

Reward Prediction Loss

Example: Transfer with SF

Conclusion

One task's **Successor Feature representation has to be re-learned** for another.

• The Successor Feature representation only initializes policy search.

However, we have shown that **Successor Features can significantly improve transfer** in RL across tasks with changing reward structure.

Thank you.

Related Paper: Lucas Lehnert, Stefanie Tellex, and Michael L. Littman Advantages and Limitations of using Successor Features for Transfer in Reinforcement Learning Lifelong Learning: A Reinforcement Learning Approach Workshop @ICML, Sydney, Australia, 2017 [arXiv]