
Using Policy Gradients to Account for Changes in Behaviour Policies

Using Policy Gradients to Account for Changes in Behaviour
Policies under Off-policy Control

Lucas Lehnert lucas.lehnert@mail.mcgill.ca
School of Computer Science
McGill University

Doina Precup dprecup@cs.mcgill.ca

School of Computer Science

McGill University

Abstract

Off-policy learning refers to the problem of learning the value function of a behaviour, or
policy, while selecting actions with a different policy. Gradient-based off-policy learning
algorithms, such as GTD (Sutton et al., 2009b) and TDC/GQ (Sutton et al., 2009a),
converge when selecting actions with a fixed policy even when using function approximation
and incremental updates. In control problems, the behaviour policy is adapted over time.
One key challenge in off-policy control is that adapting the policy results in changing the
distribution of subsequent transitions the algorithm will see. We present the first off-policy
gradient-based learning algorithm that accounts for how an adjustment of the policy at
the current time step effects the distribution of future transition samples. We derive the
algorithm in the style of policy gradients and show that our method performs favourably
to existing approaches when used for off-policy control with linear function approximation.

Keywords: Reinforcement Learning, Off-policy Control, Linear Function approximation

For Reinforcement Learning (RL) Sutton and Barto (1998) provide algorithms that can
learn the optimal control strategy in an unknown, stochastic environment, based on sampled
transitions. Off-policy learning refers to the important case when these samples do not come
from the behaviour of interest, but from some other sampling strategy. For example, Q-
learning (Watkins and Dayan, 1992) aims to compute the optimal value achievable in an
MDP, but actions are picked from an ε-greedy policy which is greedy with respect to the
current value estimates. This is a typical practical case: the behaviour used to generate
samples for learning control is not fixed, but depends on current value estimates.

In this paper, we tackle the problem of designing incremental off-policy control algo-
rithms that can account for the interaction between the value estimates and the distribution
of transitions the algorithm will sample. We build on gradient-based off-policy evaluation
algorithms such as GQ(λ) (Maei and Sutton, 2010). However, GQ(λ) is designed for the pre-
diction case and does not consider how variations in the policy effect the distribution from
which transitions are sampled. Being able to account for the interaction between variations
in parameter estimates and sampling distribution should stabilize learning. For example,
SARSA suffers from oscillations in its value function estimates and is only guaranteed to
converge to a sub-space of policies (Gordon, 2001, 1996).

We present a new gradient-based TD-learning algorithm similar to GQ that also incor-
porates policy gradients to correct for the drift in the sampling distribution. We leverage
the policy gradient framework (Sutton et al., 2000) and directly analyze the interaction
between the policy gradient and the sampling distribution. Conceptually, the idea is to

1

consider the sequence of Markov chains induced by the policy changes resulting from the
change in values. This idea has been used to analyze approximate policy iteration (Perkins
and Precup, 2003), but our algorithm is incremental, so the analysis needs to be more in-
volved. The closest related approach is the off-policy actor-critic (Degris et al., 2012), in
which gradient-based TD-learning methods are used to provide the critic and policy gradi-
ents are used to derive an update to the actor. We only estimate a value function, and the
actor is derived from this value function.

1. Gradient Temporal Difference Methods

We consider an MDPM = 〈S,A, p, r, γ〉 where S is a (finite) state space, A a (finite) action
space, p : S × A× S → [0, 1] a stochastic transition function, r : S × A× S → R a reward
function, and γ ∈ (0, 1) a discount factor. The behavior of an agent is described by a policy
π which selects actions with probability π(a|s) conditioned on s.

In TD-learning the prediction case assumes a fixed policy is used to generate infinite
length trajectories. Q-learning tries to estimate the Q-function which predicts the cumula-
tive reward of a trajectory that starts with a particular state and action:

Qπ(s, a) = Eπ

[∞∑
t=0

γtr(st, at, st+1)

∣∣∣∣∣s0 = s, a0 = a

]
.

In the control case the policy π is not held fixed and instead the agent tries to simultaneously
improve its current policy estimate and estimate that policy’s Q-function. We consider the
case of approximating Q-functions with a linear model where we assume a basis function
φ and a parameter vector θ ∈ Rn and estimate θ so that Qθ(s, a) = φ>s,aθ ≈ Qπ(s, a). Off-
policy learning considers the problem of learning value estimates of a target policy π while
sampling transitions using a different behaviour policy b.

Gradient-based TD-learning algorithms such as TDC and GQ are the first incremental
off-policy TD-learning algorithms that remain stable if used with linear-function approx-
imation. GQ performs two-time scale stochastic gradient descend (Borkar, 1997) on the
Mean Squared Projected Bellman Error (MSPBE) objective defined as

MSPBE(θ) = ||Qθ −ΠT πQθ||2D. (1)

where Qθ is the vector listing all action-values Qθ(s, a), and ||v||2D = v>Dv is a weighted

norm whereD = diag{ds,a}(s,a)∈S×A is a matrix. The Bellman operator is defined as T πv
def.
=

R+γP πv, and the projection operator is defined as Π
def.
= Φ(Φ>DΦ)>Φ>D. This projection

operator projects the one-step lookahead T πQθ back into the space of all representable value
functions (Sutton et al., 2009a). Hence finding the parameter vector θ which minimizes
MSPBE(θ) corresponds to finding the best approximation to the true value function Qπ.

One key innovation of the MSPBE objective is the use of the weight matrix D which
applies a weight to every state-action pair (s, a). These weights are interpreted as the
probability with which a state-action pair is visited and are called the stationary distribution.
This distribution is invariant of the time step t and the start state of the trajectory. This use
of the stationary distribution in conjunction with the projection operator stabilizes gradient

2

Using Policy Gradients to Account for Changes in Behaviour Policies

TD-learning under off-policy training when used with linear function approximation. In
contrast, Precup et al. (2001) use importance sampling ratios to keep track of the probability
of visiting a state, but this method suffers from high variance.

Further, the Bellman operator T π as well as the stationary distribution both depend
on the policy π. In the control case the action selection probability πθ(a|s) is typically
calculated using the action-valuesQθ(s, a), for example with a Boltzmann policy with action-
selection probabilities πθ(a|s) = exp(θ>φs,a/τ)

/∑
b exp(θ>φs,b/τ) . As πθ(a|s) depends on

the current parameter vector θ, an update to θ changes the policy and with that the Bellman
operator and the stationary distribution. The derivation of GQ(λ) does not consider this
dependency and as a result the algorithm drifts on a non-stationary Markov chain.

2. Proposed approach

Our approach is to view the policy π as a differentiable operator applied to the Q-function.

Assumption 1 The policy πθ has action selection probabilities πθ(a|s) that are differen-
tiable with respect to Qθ(s, a) = φ>s,aθ. Since Qθ is linear in θ, Qθ is differentiable and thus
πθ(a|s) is assumed to be continuously differentiable at all θ ∈ Rn.

Using this assumption we parametrize the Bellman operator in θ and write

MSPBE(θ) = ||Qθ −ΠθTθQθ||2Dθ , Tθv
def.
= R+ γPθv. (2)

In the matrix Pθ the entry P
(s′,a′),(s,a)
θ = p(s, a, s′)πθ(a

′|s′). Since the policy depends on
θ, the matrix Pθ and the Bellman operator Tθ depend on θ as well. Further we assume a
steady stationary distribution d(s) over the state space (similar to GQ) and define

ds,a
def.
= d(s)πθ(a|s), D = diag{ds,a}(s,a)∈S×A. (3)

Assuming a fixed stationary distribution d(s) can be interpreted as averaging the probability
of reaching a state in t time steps over all time steps. This assumption is also a limitation
of PGQ as changing the control policy also effects d(s). By considering d(s) as steady,
PGQ does not correct the distribution of the trajectory it has visited so far. At the time of
writing we are not aware of any algorithm that has this ability. Under these assumptions,
Lemma 1 states a new MSPBE gradient. The proof can be found in Appendix A.

Lemma 1 (PGQ Gradient Lemma) For a finite state-action MDP M = 〈S,A, p, r, γ〉
and a basis function φ : S × A → Rn, the gradient of the MSPBE objective with respect to
the parameter vector θ is

− 1

2
∇θMSPBE(θ) = Eπθ [δφs,a]− Eπθ

[
γEπθ

[
φs′,·

]
φ>
]
w − Eπθ

[∇θπθ(a|s)
πθ(a|s)

δφ>s,a

]
w

+
1

2
Eπθ

[∇θπθ(a|s)
πθ(a|s)

(φ>s,aw)2
]
− γEπθ

[
Eπθ

[∇θπθ(·|s′)
πθ(·|s′)

φ>s′,·θ

]
φ>s,a

]
w, (4)

where w = Eπθ [φs,aφ>s,a]−1Eπθ [δφs,a] is the auxiliary weight vector,

δ = r(s, a, s′) + γEπθ [φ>s′,·]θ − φ>s,aθ is the TD-error, Eπθ
[
φs′,·

]
=
∑

a πθ(a|s′)φs′,a, and

Eπθ
[
∇θπθ(·|s′)
πθ(·|s′) φ>s′,·θ

]
=
∑

s′,a′ p(s, a, s
′)πθ(a

′|s′)∇θπθ(a′|s′)πθ(a′|s′) φ>s′,a′θ.

3

2.1 Off-policy Conversion

The expectations stated in Lemma 1 are with respect to the target policy πθ. However,
in off-policy learning transition data is generated by using a different behaviour policy b.
Hence we have to re-express (17) in terms of the behaviour policy. We correct for the differ-

ence in distribution between π and b using importance sampling ratios ρ = πθ(a|s)
b(a|s) , but we

do not correct the stationary distribution over states. This is one key innovation of gradient
based TD-learning algorithms (Sutton et al., 2009b): Sampling states form a stationary dis-
tribution with respect to b stabilizes learning with linear function approximation. Lemma 2
states the off-policy version of the MSPBE gradient, its proof can be found in Appendix B.

Lemma 2 (Off-policy PGQ Gradient Lemma) For a finite state-action MDP M =
〈S,A, p, r, γ〉 and a basis function φ, the gradient of the MSPBE objective with respect to
the parameter vector θ is

− 1

2
∇θMSPBE(θ) = Eb [ρδφs,a]− Eb

[
γρEπθ

[
φs′,·

]
φ>
]
w − Eb

[
ρ
∇θπθ(a|s)
πθ(a|s)

δφ>s,a

]
w

+
1

2
Eb
[
ρ
∇θπθ(a|s)
πθ(a|s)

(φ>s,aw)2
]
− γEb

[
ρEπθ

[∇θπθ(·|s′)
πθ(·|s′)

φ>s′,·θ

]
φ>s,a

]
w (5)

where w = Eb[ρφs,aφ>s,a]−1Eb [ρδφs,a]. The remaining terms are defined as in Lemma 1.

2.2 Sampling the PGQ Gradient

To obtain an incremental online learning algorithm we have to sample the gradient in
Lemma 2. Similar to Sutton et al. (2009b) we update an auxiliary weight vector with

wt+1 = wt + βtρt(δt − φ>s,awt)φs,a. (6)

Sampling (5) gives the update rule

θt+1 = θt + αt

[
ρtδtφs,a − ρtγEπθ

[
φs′,·

]
φ>s,awt

]
− αtρt

∇θπθt(a|s)
πθt(a|s)

[
δtφ
>
s,awt −

1

2
(w>t φs,a)

2

]
− αtρtEπθ

[∇θπθ(·|s′)
πθ(·|s′)

φ>s′,·θ

]
φ>s,awt. (7)

This rule is quite intuitive as it is the same as GQ(0) minus the underlined policy gradient
correction term. Similar to Expected SARSA (Sutton and Barto, 1998, Exercise 6.10) we
calculate the expectation across all actions at the next state s′ analytically. The update
rules (7) and (6) define the new algorithm, which we call Policy-Gradient Q-learning (PGQ).

3. Experiments

In this section, we compare the PGQ algorithm to Q-learning and GQ on three standard
off-policy control domains: Baird’s counterexample, Mountain Car, and Acrobot. The
behaviour and target policies are always Boltzmann policies.

4

Using Policy Gradients to Account for Changes in Behaviour Policies

0 100 200 300 400 500

Update

0

500

1000

1500

2000

2500

3000

M
S

P
B

E
Q
GQ
PGQ

0 100 200 300 400 500

Update

0

5

10

15

20

25

30

||QQ Q
|| ∞

Q
GQ
PGQ

Figure 1: MSPBE and the highest Q-value (i.e. ||QQQ||∞) for off-policy training averaged over
20 runs. The control and target policy temperatures are τ = 10 and τ = 0.2 respectively.
Q-learning uses α = 0.01 while GQ and PGQ use α = 0.1 and β = 0.1.

3.1 Baird’s Counter Example

We tested the three algorithms on the 7 state “star” Baird counter example (Baird, 1995)
for which divergence of Q-learning is monotonic. The parameter vector θ corresponding to
the action that transitions to the 7th centre state is initialized with (1, 1, 1, 1, 1, 1, 1, 10) and
the remaining parameter entries are set to 1. In contrast to Maei et al. (2010) we do not
fix the control or target policies but use Boltzmann action selection distributions computed
directly from the action-value function. Updating was done with dynamic programming
sweeps. Figure 1 shows that PGQ converges to a solution that has an error slightly lower
than that of GQ suggesting that PGQ updates its estimates more efficiently.

3.2 Mountain Car

In the Mountain car task (Sutton and Barto, 1998) the agent has to drive an underpowered
car out of a valley up a hill. The goal of the task is to reach the top of the hill by accelerating
forward, backward, or coasting. The state space consists of the car’s position and velocity
which we tile into a 18 × 18 grid. The target temperature is set to 0.5 and the behavior
temperature is set to 1.1. Figure 2 shows that the average episode length of GQ increases
after approximately 50 episodes, i.e. GQ does not seem to converge to a good solution and
instead finds a policy whose performance becomes worse over time. However, Q-learning
and PGQ both find efficient policies with Q-learning performing significantly better than
PGQ after approximately 150 episodes. Further the plot of the θ norms reveal that all three
algorithms seem to converge to different solutions.

3.3 Acrobot

The Acrobot task (Sutton and Barto, 1998) consist of a two-link under-actuated robot arm
mounted at the top end. Torque can be applied in two directions on the middle-joint or no
torque can be applied by the agent. The state space contains four continuous variables, the
angle and angular velocity of the top and middle joint respectively. We tile this space into
12 tiles along the angular positions and 14 tiles along the angular velocities. The goal of
the agent is to learn how to apply torque to the middle joint to move the tip of the arm to

5

0 50 100 150 200

Episode

0

2000

4000

6000

8000

10000

12000
E

pi
so

de
Le

ng
th

Q GQ PGQ

0 50 100 150 200

Episode

0

20

40

60

80

100

120

140

||θ
|| ∞

Q GQ PGQ

0 50 100 150 200

Episode

0

10000

20000

30000

40000

50000

||θ
|| 1

Q GQ PGQ

Figure 2: Episode length and the infinity and L1 norm of θ on the Mountain car task
averaged over 20 repeats. Q-learning uses α = 0.5, GQ and PGQ use α = 0.1 and β = 0.005.

0 500 1000 1500 2000

Episode

0

500

1000

1500

2000

E
pi

so
de

Le
ng

th

Q GQ PGQ

0 500 1000 1500 2000

Episode

0

20

40

60

80

100

120

||θ
|| ∞

Q GQ PGQ

0 500 1000 1500 2000

Episode

0

20000

40000

60000

80000

100000

120000

||θ
|| 1

Q GQ PGQ

Figure 3: Episode length and the infinity and L1 norm of θ on the Acrobot task averaged
over 20 repeats. All algorithms use α = 0.1, GQ and PGQ use β = 0.005.

a certain height. For this task the control temperature is 1.1 and the target temperature is
0.5. Figure 3 shows that PGQ finds an efficient policy and outperforms Q-learning and GQ.
Tthe episode lengths generated by GQ first decrease and after around 150 episodes start
to increase indicating that GQ does not seem to converge to a good solution. Further, the
linear growth of the action values found by Q-learning suggests that Q-learning does not
converge on this control problem. These results highlight that under off-policy training on
complex control problems the PGQ algorithm outperforms Q-learning and GQ.

4. Conclusion

We have presented a new gradient based TD-learning algorithm that incorporates policy
gradients. The resulting algorithm is similar to GQ but also has a correction term in the
direction of the gradient of the target policy. Our analysis accounts for the dependency of the
Markov chain from which future data is sampled on the value function parameter vector θ.
This dependency is analyzed by viewing the policy merely as an operator that is applied to
the action-value function. With the exception of Perkins and Precup (2003) most previous
work analyses the policy as a probability distribution which is represented separately in
memory and is updated incrementally. However, Perkins and Precup use the idea of viewing
the policy as an operator to primarily analyze convergence of a policy iteration algorithm.
This paper presents the first approach to use this idea to derive a gradient-based algorithm
which simultaneously evaluates and improves a policy in the context of off-policy control.

6

Using Policy Gradients to Account for Changes in Behaviour Policies

Appendix A. Proof of the PGQ Gradient Lemma 1

In this section we provide the proof of the PGQ Gradient Lemma 1. The ith entry in a
vector φ is denoted with φi and the entry i, j in a matrix Φ is denoted with Φi,j . The jth
column in a matrix Φ is denoted with Φ:,j . Now we will proof Lemma 1.
Proof [Proof of Lemma 1] For the gradient derivation we first rewrite the MSPBE objective
as

MSPBE(θ) = ||Qθ −ΠθTθQθ||2Dθ
=
(

Φ>Dθ(TθQθ −Qθ)
)>

(Φ>DθΦ)−1
(

Φ>Dθ(TθQθ −Qθ)
)
.

Since we want to compute gradients of an equation containing matrices as intermediate
results, we first focus on partial derivatives with respect to θi:

∂

∂θi
MSPBE(θ)

=
∂

∂θi

[(
Φ>Dθ(TθQθ −Qθ)

)>
(Φ>DθΦ)−1

(
Φ>Dθ(TθQθ −Qθ)

)]
= 2

∂

∂θi

[(
Φ>Dθ(TθQθ −Qθ)

)>]
(Φ>DθΦ)−1

(
Φ>Dθ(TθQθ −Qθ)

)
+
(

Φ>Dθ(TθQθ −Qθ)
)> ∂

∂θi

[
(Φ>DθΦ)−1

] (
Φ>Dθ(TθQθ −Qθ)

)
.

For the partial derivative on the Bellman error we have

∂

∂θi
[TθQθ −Qθ] =

∂

∂θi
[R+ γPθΦθ − Φθ]

= γ
∂Pθ
∂θi

Φθ + γPθΦ
:,i − Φ:, i. (8)

For the derivative of the inverse feature covariance we have
∂

∂θi

[
(Φ>DΦ)−1

]
= −(Φ>DΦ)−1

∂

∂θi
(Φ>DΦ)(Φ>DΦ)−1

= −(Φ>DΦ)−1(Φ>
∂D

∂θi
Φ)(Φ>DΦ)−1. (9)

Similar to Sutton et al. (2009a) we define an auxiliary weight vector

w = (Φ>DθΦ)−1
(

Φ>Dθ(TθQθ −Qθ)
)

= Eπθ [φs,aφ
>
s,a]
−1Eπθ [δφs,a], (10)

Plugging (8) and (9) back into the derivative of the MSPBE gives

∂

∂θi
MSPBE(θ) = 2

(
Φ>

∂Dθ

∂θi
(TθQθ −Qθ)

+ Φ>Dθ(γ
∂Pθ
∂θi

Φθ + γPθΦ
:,i − Φ:,i)

)>
w − w(Φ>

∂Dθ

∂θi
Φ)w

= 2

(
Φ>

∂Dθ

∂θi
(TθQθ −Qθ)

)>
w − w(Φ>

∂Dθ

∂θi
Φ)w

+ 2

(
Φ>Dθ(γ

∂Pθ
∂θi

Φθ + γPθΦ
:,i − Φ:,i)

)>
w. (11)

7

Now we will further decompose the remaining derivative terms and rewrite them in terms
of expectations. For the first term we have

Φ>
∂Dθ

∂θi
(TθQθ −Qθ) = Φ>diag

{
ds
∂πθ(a|s)
∂θi

}
(s,a)∈S×A

(R+ γPθQθ −Qθ)

=
∑
s,a,s′

ds
∂πθ(a|s)
∂θi

φ>s,aδ

= Eπθ

[
∂πθ(a|s)

/
∂θi

πθ(a|s)
δφ>s,a

]
, (12)

where

δ = r(s, a, s′) + γEπθ
[
φ>s′,·

]
θ − φ>s,aθ

is the TD-error. For the second term we obtain

Φ>
∂D

∂θi
Φ =

∑
s,a

d(s)
∂πθ(a|s)
∂θi

φs,aφ
>
s,a

= Eπθ

[
∂πθ(a|s)
∂θi

πθ(a|s)
φs,aφ

>
s,a

]
. (13)

For the third matrix term we have

Φ>Dθ(γ
∂Pθ
∂θi

Φθ + γPθΦ
:,i − Φ:,i)

= Φ>Dθ

(
γ

∑

s′,a′ t(s1, a1, s
′)∂πθ(a

′|s′)
∂θi

θ>φs′,a′
...∑

s′,a′ t(sn, am, s
′)∂πθ(a

′|s′)
∂θi

θ>φs′,a′

+ γ

∑

s′,a′ t(s1, a1, s
′)πθ(a

′|s′)φis′,a′
...∑

s′,a′ t(sn, am, s
′)πθ(a

′|s′)φis′,a′

− Φ:,i

)

=
∑
s,a

d(s, a)φ>

(
γ
∑
s′,a′

t(s, a, s′)
∂πθ(a

′|s′)
∂θi

θ>φis′,a′ + γ
∑
s′,a′

t(s, a, s′)πθ(a
′|s′)φis′,a′ − φis,a

)

= Eπθ

[(
γEπθ

[
∂πθ(a

′|s′)
/
∂θi

πθ(a′|s′)
θ>φs′,a′

]
+ γEπθ

[
φis′,a′

]
− φis,a

)
φ>s,a

]
. (14)

Plugging (12), (13), and (14) into (11) gives

∂

∂θi
MSPBE(θ) = 2Eπθ

[
∂πθ(a|s)
∂θi

πθ(a|s)
πθ(a|s)δφ>s,a

]
w

+ 2Eπθ

[(
γEπθ

[
∂πθ(a

′|s′)
/
∂θi

πθ(a′|s′)
θ>φs′,a′

]
+ γEπθ

[
φis′,a′

]
− φis,a

)
φ>s,a

]
w

− w>Eπθ

[
∂πθ(a|s)
∂θi

πθ(a|s)
φs,aφ

>
s,a

]
w. (15)

8

Using Policy Gradients to Account for Changes in Behaviour Policies

Stacking the individual terms together into a gradient gives

∇θMSPBE(θ) = 2Eπθ

[∇θπθ(a|s)
πθ(a|s)

πθ(a|s)δφ>s,a
]
w

+ 2Eπθ

[(
γEπθ

[
∇θπθ(·|s′)
πθ(·|s′)

θ>φs′,·

]
+ γEπθ

[
φ>s′,·

]
− φs,a

)
φ>s,a

]
w

− w>Eπθ
[∇θπθ(a|s)
πθ(a|s)

φs,aφ
>
s,a

]
w

= 2Eπθ

[∇θπθ(a|s)
πθ(a|s)

πθ(a|s)δφ>s,a
]
w

+ 2Eπθ

[
γEπθ

[∇θπθ(·|s′)
πθ(·|s′)

φ>s′,·θ

]]
w

+ 2Eπθ
[
γEπθ

[
φ>s′,·

]]
w − 2Eπθ

[
φs,aφ

>
s,a

]
Eπθ [φs,aφ

>
s,a]
−1Eπθ [δφs,a]︸ ︷︷ ︸

=w

− w>Eπθ
[∇θπθ(a|s)
πθ(a|s)

φs,aφ
>
s,a

]
w

= 2Eπθ

[∇θπθ(a|s)
πθ(a|s)

πθ(a|s)δφ>s,a
]
w

+ 2Eπθ

[
γEπθ

[∇θπθ(·|s′)
πθ(·|s′)

φ>s′,·θ

]]
w

+ 2Eπθ
[
γEπθ

[
φ>s′,·

]]
w − 2Eπθ [δφs,a]

− w>Eπθ
[∇θπθ(a|s)
πθ(a|s)

φs,aφ
>
s,a

]
w. (16)

Multiplying both sides with −1/2 gives

−1

2
∇θMSPBE(θ) = Eπθ [δφs,a]− Eπθ

[
γEπθ

[
φs′,·

]
φ>
]
w

− Eπθ

[∇θπθ(a|s)
πθ(a|s)

δφ>s,a

]
w +

1

2
Eπθ

[∇θπθ(a|s)
πθ(a|s)

(w>φs,a)
2

]
− γEπθ

[
Eπθ

[∇θπθ(·|s′)
πθ(·|s′)

φ>s′,·θ

]
φ>s,a

]
w. (17)

Appendix B. Proof of the Off-policy PGQ Gradient Lemma 2

In this section we proof the off-policy conversion Lemma 2.
Proof [Proof of Lemma 2] We want to re-express the expectations stated in Lemma 1 in
terms of the behavior policy b rather than the target policy πθ. This is done using the
common importance sampling correction defined as

ρ
def.
=

πθ(a|s)
b(a|s) . (18)

9

However, ρ only corrects the action selection probabilities and not the probability of sam-
pling a transition starting at a state s. Similar to GTD (Sutton et al., 2009b), TDC (Sutton
et al., 2009a), and GQ (Maei and Sutton, 2010), we do not correct the stationary distribu-
tion db(s) from the behavior policy b to the target policy πθ. Sutton et al. (2009b) have
shown that doing this stabilizes off-policy training. Hence we can re-express the MSPBE
gradient as

− 1

2
∇θMSPBE(θ) = Eb [ρδφs,a]− Eb

[
γρEπθ

[
φs′,·

]
φ>
]
w − Eb

[
ρ
∇θπθ(a|s)
πθ(a|s)

δφ>s,a

]
w

+
1

2
Eb
[
ρ
∇θπθ(a|s)
πθ(a|s)

(φ>s,aw)2
]
− γEb

[
ρEπθ

[∇θπθ(·|s′)
πθ(·|s′)

φ>s′,·θ

]
φ>s,a

]
w

and the auxiliary weight vector as

w = Eb
[
ρφs,aφ

>
s,a

]−1
Eb [ρδφs,a] .

References

Leemon Baird. Residual Algorithms: Reinforcement Learning with Function Approxima-
tion. In Proceedings of the Twelfth International Conference on Machine Learning, pages
30–37. Morgan Kaufmann, 1995.

V. S. Borkar and S.P. Meyn. The o.d.e. method for convergence of stochastic approximation
and reinforcement learning. SIAM J. Control Optim, 38:447–469, 1999.

Vivek S. Borkar. Stochastic approximation with two time scales. Systems & Control Letters,
29(5):291 – 294, 1997.

Thomas Degris, Martha White, and Richard Sutton. Off-Policy Actor-Critic. In John
Langford and Joelle Pineau, editors, Proceedings of the 29th International Conference
on Machine Learning (ICML-12), ICML ’12, pages 457–464, New York, NY, USA, July
2012. Omnipress.

Geoffrey J. Gordon. Chattering in SARSA(λ) - A CMU Learning Lab Internal Report.
Technical report, Carnegie Mellon University, 1996.

Geoffrey J. Gordon. Reinforcement Learning with Function Approximation Converges to
a Region. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural
Information Processing Systems, pages 1040–1046. The MIT Press, 2001.

H. R. Maei and R. S. Sutton. GQ(λ): A general gradient algorithm for temporal-difference
prediction learning with eligibility traces. In Proceedings of the Third Conference on
Artificial General Intelligence, Advances in Intelligent Systems Research. Atlantis Press,
March 2010.

10

Using Policy Gradients to Account for Changes in Behaviour Policies

Hamid Reza Maei, Csaba Szepesvari, Shalabh Bhatnagar, and Richard S. Sutton. Toward
Off-Policy Learning Control with Function Approximation. In Johannes Fürnkranz and
Thorsten Joachims, editors, Proceedings of the 27th International Conference on Machine
Learning (ICML-10), pages 719–726, Haifa, Israel, June 2010. Omnipress.

Theodore J. Perkins and Doina Precup. A convergent form of approximate policy iteration.
In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information
Processing Systems 15, pages 1627–1634. MIT Press, 2003.

Doina Precup, Richard S. Sutton, and Sanjoy Dasgupta. Off-policy temporal difference
learning with function approximation. In Proceedings of the Eighteenth International
Conference on Machine Learning, ICML ’01, pages 417–424, San Francisco, CA, USA,
2001. Morgan Kaufmann Publishers Inc.

Richard Sutton, Hamid Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba
Szepesvari, and Eric Wiewiora. Fast Gradient-Descent Methods for Temporal-Difference
Learning with Linear Function Approximation. In Léon Bottou and Michael Littman,
editors, Proceedings of the 26th International Conference on Machine Learning, pages
993–1000, Montreal, June 2009a. Omnipress.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A
Bradford Book. MIT Press, Cambridge, MA, 1 edition, 1998.

Richard S Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy
Gradient Methods for Reinforcement Learning with Function Approximation. In S. A.
Solla, T. K. Leen, and K. Müller, editors, Advances in Neural Information Processing
Systems 12, pages 1057–1063. MIT Press, 2000.

Richard S Sutton, Hamid R. Maei, and Csaba Szepesvári. A Convergent O(n) Temporal-
difference Algorithm for Off-policy Learning with Linear Function Approximation. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Infor-
mation Processing Systems 21, pages 1609–1616. Curran Associates, Inc., 2009b.

Christopher J.C.H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3):279–292,
May 1992.

11

	Gradient Temporal Difference Methods
	Proposed approach
	Off-policy Conversion
	Sampling the PGQ Gradient

	Experiments
	Baird's Counter Example
	Mountain Car
	Acrobot

	Conclusion
	Proof of the PGQ Gradient Lemma 1
	Proof of the Off-policy PGQ Gradient Lemma 2

